-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | CAES Language for Synchronous Hardware - As a Library -- @package clash-lib @version 0.4 -- | Transform/format a Netlist Identifier so that it is acceptable as a -- VHDL identifier module CLaSH.Netlist.Id -- | Transform/format a text so that it is acceptable as a VHDL identifier mkBasicId :: Text -> Text mkBasicId' :: Bool -> Text -> Text stripDollarPrefixes :: Text -> Text -- | Type and instance definitions for Primitive module CLaSH.Primitives.Types -- | Primitive Definitions type PrimMap = HashMap Text Primitive -- | Externally defined primitive data Primitive -- | A primitive that has a template that can be filled out by the backend -- render BlackBox :: Text -> Either Text Text -> Primitive -- | Name of the primitive name :: Primitive -> Text -- | Either a declaration or an expression template. template :: Primitive -> Either Text Text -- | A primitive that carries additional information Primitive :: Text -> Text -> Primitive -- | Name of the primitive name :: Primitive -> Text -- | Additional information primType :: Primitive -> Text instance FromJSON Primitive -- | Assortment of utility function used in the CLaSH library module CLaSH.Util -- | A class that can generate unique numbers class MonadUnique m getUniqueM :: MonadUnique m => m Int -- | Create a TH expression that returns the a formatted string containing -- the name of the module curLoc is spliced into, and the line -- where it was spliced. curLoc :: Q Exp -- | Cache the result of a monadic action makeCached :: (MonadState s m, Hashable k, Eq k) => k -> Lens' s (HashMap k v) -> m v -> m v -- | Cache the result of a monadic action in a State 3 transformer layers -- down makeCachedT3 :: (MonadTrans t2, MonadTrans t1, MonadTrans t, Eq k, Hashable k, MonadState s m, Monad (t2 m), Monad (t1 (t2 m)), Monad (t (t1 (t2 m)))) => k -> Lens' s (HashMap k v) -> (t (t1 (t2 m))) v -> (t (t1 (t2 m))) v -- | Spine-strict cache variant of mkCachedT3 makeCachedT3S :: (MonadTrans t2, MonadTrans t1, MonadTrans t, Eq k, Hashable k, MonadState s m, Monad (t2 m), Monad (t1 (t2 m)), Monad (t (t1 (t2 m))), NFData v) => k -> Lens' s (HashMap k v) -> (t (t1 (t2 m))) v -> (t (t1 (t2 m))) v -- | Run a State-action using the State that is stored in a higher-layer -- Monad liftState :: MonadState s m => Lens' s s' -> State s' a -> m a -- | Functorial version of first firstM :: Functor f => (a -> f c) -> (a, b) -> f (c, b) -- | Functorial version of second secondM :: Functor f => (b -> f c) -> (a, b) -> f (a, c) combineM :: Applicative f => (a -> f b) -> (c -> f d) -> (a, c) -> f (b, d) -- | Performs trace when first argument evaluates to True traceIf :: Bool -> String -> a -> a -- | Monadic version of partition partitionM :: Monad m => (a -> m Bool) -> [a] -> m ([a], [a]) -- | Monadic version of mapAccumL mapAccumLM :: Monad m => (acc -> x -> m (acc, y)) -> acc -> [x] -> m (acc, [y]) -- | Composition of a unary function with a binary function dot :: (c -> d) -> (a -> b -> c) -> a -> b -> d -- | if-then-else as a function on an argument ifThenElse :: (a -> Bool) -> (a -> b) -> (a -> b) -> a -> b -- | Applicative version of 'GHC.Types.(:)' (<:>) :: Applicative f => f a -> f [a] -> f [a] -- | Safe indexing, returns a Nothing if the index does not exist indexMaybe :: [a] -> Int -> Maybe a -- | Unsafe indexing, return a custom error message when indexing fails indexNote :: String -> [a] -> Int -> a -- | Split the second list at the length of the first list splitAtList :: [b] -> [a] -> ([a], [a]) clashLibVersion :: Version -- | ceiling (log_2(c)) clog2 :: (Integral a, Integral c) => a -> c -- | Build lenses (and traversals) with a sensible default configuration. -- -- e.g. -- --
--   data FooBar
--     = Foo { _x, _y :: Int }
--     | Bar { _x :: Int }
--   makeLenses ''FooBar
--   
-- -- will create -- --
--   x :: Lens' FooBar Int
--   x f (Foo a b) = (\a' -> Foo a' b) <$> f a
--   x f (Bar a)   = Bar <$> f a
--   y :: Traversal' FooBar Int
--   y f (Foo a b) = (\b' -> Foo a  b') <$> f b
--   y _ c@(Bar _) = pure c
--   
-- --
--   makeLenses = makeLensesWith lensRules
--   
makeLenses :: Name -> DecsQ instance Ord a => Ord (Embed a) instance Hashable (Name a) instance Monad m => MonadUnique (StateT Int m) -- | Utility functions to generate Primitives module CLaSH.Primitives.Util -- | Generate a set of primitives that are found in the primitive -- definition files in the given directories. generatePrimMap :: [FilePath] -> IO PrimMap -- | Parse a ByteString according to the given JSON template. Prints -- failures on stdout, and returns Nothing if parsing -- fails. decodeAndReport :: FromJSON a => ByteString -> Maybe a -- | Variables in CoreHW module CLaSH.Core.Var -- | Variables in CoreHW data Var a -- | Constructor for type variables TyVar :: Name a -> Embed Kind -> Var a varName :: Var a -> Name a varKind :: Var a -> Embed Kind -- | Constructor for term variables Id :: Name a -> Embed Type -> Var a varName :: Var a -> Name a varType :: Var a -> Embed Type -- | Term variable type Id = Var Term -- | Type variable type TyVar = Var Type -- | Change the name of a variable modifyVarName :: (Name a -> Name a) -> Var a -> Var a instance NFData (Name a) => NFData (Var a) instance Subst Type Id instance Subst Type TyVar instance Subst Term TyVar instance Subst Term Id instance Alpha a => Alpha (Var a) instance (Rep a0, Sat (ctx0 (Name a0)), Sat (ctx0 (Embed Kind)), Sat (ctx0 (Embed Type))) => Rep1 ctx0 (Var a0) instance Rep a0 => Rep (Var a0) instance Eq (Var a) instance Ord (Var a) instance Show (Var a) -- | Type Constructors in CoreHW module CLaSH.Core.TyCon -- | Type Constructor data TyCon -- | Algorithmic DataCons AlgTyCon :: TyConName -> Kind -> Int -> AlgTyConRhs -> TyCon -- | Name of the TyCon tyConName :: TyCon -> TyConName -- | Kind of the TyCon tyConKind :: TyCon -> Kind -- | Number of type arguments tyConArity :: TyCon -> Int -- | DataCon definitions algTcRhs :: TyCon -> AlgTyConRhs -- | Function TyCons (e.g. type families) FunTyCon :: TyConName -> Kind -> Int -> [([Type], Type)] -> TyCon -- | Name of the TyCon tyConName :: TyCon -> TyConName -- | Kind of the TyCon tyConKind :: TyCon -> Kind -- | Number of type arguments tyConArity :: TyCon -> Int -- | List of: ([LHS match types], RHS type) tyConSubst :: TyCon -> [([Type], Type)] -- | Primitive TyCons PrimTyCon :: TyConName -> Kind -> Int -> TyCon -- | Name of the TyCon tyConName :: TyCon -> TyConName -- | Kind of the TyCon tyConKind :: TyCon -> Kind -- | Number of type arguments tyConArity :: TyCon -> Int -- | To close the loop on the type hierarchy SuperKindTyCon :: TyConName -> TyCon -- | Name of the TyCon tyConName :: TyCon -> TyConName -- | TyCon reference type TyConName = Name TyCon -- | The RHS of an Algebraic Datatype data AlgTyConRhs DataTyCon :: [DataCon] -> AlgTyConRhs -- | The DataCons of a TyCon dataCons :: AlgTyConRhs -> [DataCon] NewTyCon :: DataCon -> ([TyName], Type) -> AlgTyConRhs -- | The newtype DataCon dataCon :: AlgTyConRhs -> DataCon -- | The argument type of the newtype DataCon in eta-reduced form, which is -- just the representation of the TyCon. The TyName's are the -- type-variables from the corresponding TyCon. ntEtadRhs :: AlgTyConRhs -> ([TyName], Type) -- | Create a Kind out of a TyConName mkKindTyCon :: TyConName -> Kind -> TyCon -- | Does the TyCon look like a tuple TyCon isTupleTyConLike :: TyConName -> Bool -- | Get the DataCons belonging to a TyCon tyConDataCons :: TyCon -> [DataCon] instance NFData AlgTyConRhs instance NFData (Name TyCon) instance NFData TyCon instance Subst Term AlgTyConRhs instance Subst Term TyCon instance Subst Type AlgTyConRhs instance Subst Type TyCon instance Alpha AlgTyConRhs instance Alpha TyCon instance (Sat (ctx0 [DataCon]), Sat (ctx0 DataCon), Sat (ctx0 ([TyName], Type))) => Rep1 ctx0 AlgTyConRhs instance Rep AlgTyConRhs instance (Sat (ctx0 TyConName), Sat (ctx0 Kind), Sat (ctx0 Int), Sat (ctx0 AlgTyConRhs), Sat (ctx0 [([Type], Type)])) => Rep1 ctx0 TyCon instance Rep TyCon instance Show AlgTyConRhs instance Ord TyCon instance Eq TyCon instance Show TyCon -- | Builtin Type and Kind definitions module CLaSH.Core.TysPrim liftedTypeKind :: Type typeNatKind :: Type typeSymbolKind :: Type intPrimTy :: Type voidPrimTy :: Type tysPrimMap :: HashMap TyConName TyCon -- | Term Literal module CLaSH.Core.Literal -- | Term Literal data Literal IntegerLiteral :: Integer -> Literal StringLiteral :: String -> Literal RationalLiteral :: Rational -> Literal -- | Determines the Type of a Literal literalType :: Literal -> Type instance NFData Literal instance Subst Term Literal instance Subst Type Literal instance Alpha Literal instance Subst b Rational instance Alpha Rational instance (Sat (ctx0 Integer), Sat (ctx0 String), Sat (ctx0 Rational)) => Rep1 ctx0 Literal instance Rep Literal instance Eq Literal instance Ord Literal instance Show Literal -- | Data Constructors in CoreHW module CLaSH.Core.DataCon -- | Data Constructor data DataCon MkData :: DcName -> ConTag -> Type -> [TyName] -> [TyName] -> [Type] -> DataCon -- | Name of the DataCon dcName :: DataCon -> DcName -- | Syntactical position in the type definition dcTag :: DataCon -> ConTag -- | Type of the 'DataCon dcType :: DataCon -> Type -- | Universally quantified type-variables, these type variables are also -- part of the result type of the DataCon dcUnivTyVars :: DataCon -> [TyName] -- | Existentially quantified type-variables, these type variables are not -- part of the result of the DataCon, but only of the arguments. dcExtTyVars :: DataCon -> [TyName] -- | Argument types dcArgTys :: DataCon -> [Type] -- | DataCon reference type DcName = Name DataCon -- | Syntactical position of the DataCon in the type definition type ConTag = Int -- | Given a DataCon and a list of types, the type variables of the DataCon -- type are substituted for the list of types. The argument types are -- returned. -- -- The list of types should be equal to the number of type variables, -- otherwise an error is reported. dataConInstArgTys :: DataCon -> [Type] -> [Type] instance NFData (Name DataCon) instance NFData DataCon instance Subst Term DataCon instance Subst Type DataCon instance Alpha DataCon instance (Sat (ctx0 DcName), Sat (ctx0 ConTag), Sat (ctx0 Type), Sat (ctx0 [TyName]), Sat (ctx0 [Type])) => Rep1 ctx0 DataCon instance Rep DataCon instance Ord DataCon instance Eq DataCon instance Show DataCon -- | Term representation in the CoreHW language: System F + LetRec + Case module CLaSH.Core.Term -- | Term representation in the CoreHW language: System F + LetRec + Case data Term -- | Variable reference Var :: Type -> TmName -> Term -- | Datatype constructor Data :: DataCon -> Term -- | Literal Literal :: Literal -> Term -- | Primitive Prim :: Text -> Type -> Term -- | Term-abstraction Lam :: (Bind Id Term) -> Term -- | Type-abstraction TyLam :: (Bind TyVar Term) -> Term -- | Application App :: Term -> Term -> Term -- | Type-application TyApp :: Term -> Type -> Term -- | Recursive let-binding Letrec :: (Bind (Rec [LetBinding]) Term) -> Term -- | Case-expression: subject, type of alternatives, list of alternatives Case :: Term -> Type -> [Bind Pat Term] -> Term -- | Term reference type TmName = Name Term -- | Binding in a LetRec construct type LetBinding = (Id, Embed Term) -- | Patterns in the LHS of a case-decomposition data Pat -- | Datatype pattern, '[TyVar]' bind existentially-quantified -- type-variables of a DataCon DataPat :: (Embed DataCon) -> (Rebind [TyVar] [Id]) -> Pat -- | Literal pattern LitPat :: (Embed Literal) -> Pat -- | Default pattern DefaultPat :: Pat instance NFData (Name Term) instance NFData Pat instance NFData Term instance Subst Type Text instance Subst Term Text instance Subst Type Term instance Subst Type Pat instance Subst Term Term instance Subst Term Pat instance Alpha Pat instance Alpha Term instance Ord Term instance Eq Term instance (Sat (ctx0 (Embed DataCon)), Sat (ctx0 (Rebind [TyVar] [Id])), Sat (ctx0 (Embed Literal))) => Rep1 ctx0 Pat instance Rep Pat instance (Sat (ctx0 Type), Sat (ctx0 TmName), Sat (ctx0 DataCon), Sat (ctx0 Literal), Sat (ctx0 Text), Sat (ctx0 (Bind Id Term)), Sat (ctx0 (Bind TyVar Term)), Sat (ctx0 Term), Sat (ctx0 (Bind (Rec [LetBinding]) Term)), Sat (ctx0 [Bind Pat Term])) => Rep1 ctx0 Term instance Rep Term instance Alpha Text instance Rep1 ctx0 Text instance Rep Text instance Show Term instance Show Pat -- | Capture-free substitution function for CoreHW module CLaSH.Core.Subst -- | Substitutes types in a type substTys :: [(TyName, Type)] -> Type -> Type -- | Substitutes a type in a type substTy :: TyName -> Type -> Type -> Type -- | Substitutes kinds in a kind substKindWith :: [(KiName, Kind)] -> Kind -> Kind -- | Substitutes a type in a term substTyInTm :: TyName -> Type -> Term -> Term -- | Substitutes types in a term substTysinTm :: [(TyName, Type)] -> Term -> Term -- | Substitutes a term in a term substTm :: TmName -> Term -> Term -> Term -- | Substitutes terms in a term substTms :: [(TmName, Term)] -> Term -> Term -- | Types in CoreHW module CLaSH.Core.Type -- | Types in CoreHW: function and polymorphic types data Type -- | Type variable VarTy :: Kind -> TyName -> Type -- | Type constant ConstTy :: ConstTy -> Type -- | Polymorphic Type ForAllTy :: (Bind TyVar Type) -> Type -- | Type Application AppTy :: Type -> Type -> Type -- | Type literal LitTy :: LitTy -> Type -- | An easier view on types data TypeView -- | Function type FunTy :: Type -> Type -> TypeView -- | Applied TyCon TyConApp :: TyConName -> [Type] -> TypeView -- | Neither of the above OtherType :: Type -> TypeView -- | Type Constants data ConstTy -- | TyCon type TyCon :: TyConName -> ConstTy -- | Function type Arrow :: ConstTy -- | Literal Types data LitTy NumTy :: Int -> LitTy SymTy :: String -> LitTy -- | The level above types type Kind = Type -- | Either a Kind or a Type type KindOrType = Type -- | Reference to a Kind type KiName = Name Kind -- | Reference to a Type type TyName = Name Type -- | Type variable type TyVar = Var Type -- | An easier view on types tyView :: Type -> TypeView -- | A view on types in which Signal types and newtypes are -- transparent, and type functions are evaluated when possible. coreView :: HashMap TyConName TyCon -> Type -> TypeView -- | A transformation that renders Signal types transparent transparentTy :: Type -> Type -- | Determine the kind of a type typeKind :: HashMap TyConName TyCon -> Type -> Kind -- | Make a Type out of a TyCon mkTyConTy :: TyConName -> Type -- | Make a function type of an argument and result type mkFunTy :: Type -> Type -> Type -- | Make a TyCon Application out of a TyCon and a list of argument types mkTyConApp :: TyConName -> [Type] -> Type -- | Split a function type in an argument and result type splitFunTy :: HashMap TyConName TyCon -> Type -> Maybe (Type, Type) splitFunTys :: HashMap TyConName TyCon -> Type -> ([Type], Type) -- | Split a poly-function type in a: list of type-binders and argument -- types, and the result type splitFunForallTy :: Type -> ([Either TyVar Type], Type) -- | Split a TyCon Application in a TyCon and its arguments splitTyConAppM :: Type -> Maybe (TyConName, [Type]) -- | Is a type a polymorphic or function type? isPolyFunTy :: Type -> Bool -- | Is a type a polymorphic or function type under coreView? isPolyFunCoreTy :: HashMap TyConName TyCon -> Type -> Bool -- | Is a type polymorphic? isPolyTy :: Type -> Bool -- | Is a type a function type? isFunTy :: HashMap TyConName TyCon -> Type -> Bool -- | Apply a function type to an argument type and get the result type applyFunTy :: HashMap TyConName TyCon -> Type -> Type -> Type -- | Substitute the type variable of a type (ForAllTy) with another -- type applyTy :: Fresh m => HashMap TyConName TyCon -> Type -> KindOrType -> m Type findFunSubst :: [([Type], Type)] -> [Type] -> Maybe Type instance NFData LitTy instance NFData ConstTy instance NFData (Name Type) instance NFData Type instance Ord Type instance Eq Type instance Subst Type Type instance Subst Term Type instance Subst Term ConstTy instance Subst Type ConstTy instance Subst Term LitTy instance Subst Type LitTy instance Alpha LitTy instance Alpha ConstTy instance Alpha Type instance Sat (ctx0 TyConName) => Rep1 ctx0 ConstTy instance Rep ConstTy instance (Sat (ctx0 Int), Sat (ctx0 String)) => Rep1 ctx0 LitTy instance Rep LitTy instance (Sat (ctx0 Kind), Sat (ctx0 TyName), Sat (ctx0 ConstTy), Sat (ctx0 (Bind TyVar Type)), Sat (ctx0 Type), Sat (ctx0 LitTy)) => Rep1 ctx0 Type instance Rep Type instance Show LitTy instance Show Type instance Show ConstTy instance Show TypeView -- | Free variable calculations module CLaSH.Core.FreeVars -- | Gives the free type-variables in a Type typeFreeVars :: Collection c => Type -> c TyName -- | Gives the free type-variables and free term-variables of a Term termFreeVars :: Collection c => Term -> (c TyName, c TmName) -- | Gives the free term-variables of a Term termFreeIds :: Collection c => Term -> c TmName -- | Gives the free type-variables of a Term termFreeTyVars :: Collection c => Term -> c TyName -- | Type definitions used by the Driver module module CLaSH.Driver.Types -- | Global function binders type BindingMap = HashMap TmName (Type, Term) -- | Pretty printing class and instances for CoreHW module CLaSH.Core.Pretty -- | Pretty printing Show-like typeclass class Pretty p where ppr = pprPrec 0 ppr :: (Pretty p, Applicative m, LFresh m) => p -> m Doc pprPrec :: (Pretty p, Applicative m, LFresh m) => Rational -> p -> m Doc -- | Print a Pretty thing to a String showDoc :: Pretty p => p -> String instance Eq TypePrec instance Ord TypePrec instance Pretty Pat instance Pretty Literal instance Pretty DataCon instance Pretty (Var Term) instance Pretty Term instance Pretty LitTy instance Pretty TyCon instance Pretty (Var Type) instance Pretty Type instance Pretty (Id, Term) instance Pretty a => Pretty [a] instance Pretty (Name a) -- | Smart constructor and destructor functions for CoreHW module CLaSH.Core.Util -- | Type environment/context type Gamma = HashMap TmName Type -- | Kind environment/context type Delta = HashMap TyName Kind -- | Determine the type of a term termType :: (Functor m, Fresh m) => HashMap TyConName TyCon -> Term -> m Type -- | Split a (Type)Application in the applied term and it arguments collectArgs :: Term -> (Term, [Either Term Type]) -- | Split a (Type)Abstraction in the bound variables and the abstracted -- term collectBndrs :: Fresh m => Term -> m ([Either Id TyVar], Term) -- | Get the result type of a polymorphic function given a list of -- arguments applyTypeToArgs :: Fresh m => HashMap TyConName TyCon -> Type -> [Either Term Type] -> m Type -- | Get the list of term-binders out of a DataType pattern patIds :: Pat -> [Id] -- | Make a type variable mkTyVar :: Kind -> TyName -> TyVar -- | Make a term variable mkId :: Type -> TmName -> Id -- | Abstract a term over a list of term and type variables mkAbstraction :: Term -> [Either Id TyVar] -> Term -- | Abstract a term over a list of term variables mkTyLams :: Term -> [TyVar] -> Term -- | Abstract a term over a list of type variables mkLams :: Term -> [Id] -> Term -- | Apply a list of types and terms to a term mkApps :: Term -> [Either Term Type] -> Term -- | Apply a list of terms to a term mkTmApps :: Term -> [Term] -> Term -- | Apply a list of types to a term mkTyApps :: Term -> [Type] -> Term -- | Does a term have a function type? isFun :: (Functor m, Fresh m) => HashMap TyConName TyCon -> Term -> m Bool -- | Does a term have a function or polymorphic type? isPolyFun :: (Functor m, Fresh m) => HashMap TyConName TyCon -> Term -> m Bool -- | Is a term a term-abstraction? isLam :: Term -> Bool -- | Is a term a recursive let-binding? isLet :: Term -> Bool -- | Is a term a variable reference? isVar :: Term -> Bool -- | Is a term a datatype constructor? isCon :: Term -> Bool -- | Is a term a primitive? isPrim :: Term -> Bool -- | Make variable reference out of term variable idToVar :: Id -> Term -- | Make a term variable out of a variable reference varToId :: Term -> Id termSize :: Term -> Int -- | Type and instance definitions for Netlist modules module CLaSH.Netlist.Types -- | Monad that caches generated components (StateT) and remembers hidden -- inputs of components that are being generated (WriterT) newtype NetlistMonad a NetlistMonad :: WriterT [(Identifier, HWType)] (StateT NetlistState (FreshMT IO)) a -> NetlistMonad a runNetlist :: NetlistMonad a -> WriterT [(Identifier, HWType)] (StateT NetlistState (FreshMT IO)) a -- | State for the VHDLM monad: -- -- type VHDLState = (HashSet HWType, Int, HashMap HWType Doc) -- | State of the NetlistMonad data NetlistState NetlistState :: HashMap TmName (Type, Term) -> Gamma -> Int -> Int -> HashMap TmName Component -> PrimMap -> VHDLState -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> NetlistState -- | Global binders _bindings :: NetlistState -> HashMap TmName (Type, Term) -- | Type environment/context _varEnv :: NetlistState -> Gamma -- | Number of signal declarations _varCount :: NetlistState -> Int -- | Number of create components _cmpCount :: NetlistState -> Int -- | Cached components _components :: NetlistState -> HashMap TmName Component -- | Primitive Definitions _primitives :: NetlistState -> PrimMap -- | State for the VHDLM Monad _vhdlMState :: NetlistState -> VHDLState -- | Hardcoded Type -> HWType translator _typeTranslator :: NetlistState -> HashMap TyConName TyCon -> Type -> Maybe (Either String HWType) -- | TyCon cache _tcCache :: NetlistState -> HashMap TyConName TyCon -- | Signal reference type Identifier = Text -- | Component: base unit of a Netlist data Component Component :: Identifier -> [(Identifier, HWType)] -> [(Identifier, HWType)] -> (Identifier, HWType) -> [Declaration] -> Component -- | Name of the component componentName :: Component -> Identifier -- | Ports that have no correspondence the original function definition hiddenPorts :: Component -> [(Identifier, HWType)] -- | Input ports inputs :: Component -> [(Identifier, HWType)] -- | Output port output :: Component -> (Identifier, HWType) -- | Internal declarations declarations :: Component -> [Declaration] -- | Size indication of a type (e.g. bit-size or number of elements) type Size = Int -- | Representable hardware types data HWType -- | Empty type Void :: HWType -- | Boolean type Bool :: HWType -- | Integer type Integer :: HWType -- | BitVector of a specified size BitVector :: Size -> HWType -- | Unsigned integer with specified (exclusive) upper bounder Index :: Size -> HWType -- | Signed integer of a specified size Signed :: Size -> HWType -- | Unsigned integer of a specified size Unsigned :: Size -> HWType -- | Vector type Vector :: Size -> HWType -> HWType -- | Sum type: Name and Constructor names Sum :: Identifier -> [Identifier] -> HWType -- | Product type: Name and field types Product :: Identifier -> [HWType] -> HWType -- | Sum-of-Product type: Name and Constructor names + field types SP :: Identifier -> [(Identifier, [HWType])] -> HWType -- | Clock type with specified period Clock :: Int -> HWType -- | Reset type corresponding to clock with a specified period Reset :: Int -> HWType -- | Internals of a Component data Declaration -- | Signal assignment: -- -- Assignment :: Identifier -> Expr -> Declaration -- | Conditional signal assignment: -- -- CondAssignment :: Identifier -> Expr -> [(Maybe Expr, Expr)] -> Declaration -- | Instantiation of another component InstDecl :: Identifier -> Identifier -> [(Identifier, Expr)] -> Declaration -- | Instantiation of blackbox declaration BlackBoxD :: Text -> Declaration -- | Signal declaration NetDecl :: Identifier -> HWType -> (Maybe Expr) -> Declaration -- | Expression Modifier data Modifier -- | Index the expression: (Type of expression,DataCon tag,Field Tag) Indexed :: (HWType, Int, Int) -> Modifier -- | See expression in a DataCon context: (Type of the expression, DataCon -- tag) DC :: (HWType, Int) -> Modifier -- | See the expression in the context of a Vector append operation VecAppend :: Modifier -- | Expression used in RHS of a declaration data Expr -- | Literal expression Literal :: (Maybe (HWType, Size)) -> Literal -> Expr -- | DataCon application DataCon :: HWType -> (Maybe Modifier) -> [Expr] -> Expr -- | Signal reference Identifier :: Identifier -> (Maybe Modifier) -> Expr -- | Left e: tagToEnum DataTag :: HWType -> (Either Expr Expr) -> Expr -- | Instantiation of a BlackBox expression BlackBoxE :: Text -> (Maybe Modifier) -> Expr -- | Literals used in an expression data Literal -- | Number literal NumLit :: Integer -> Literal -- | Bit literal BitLit :: Bit -> Literal -- | Boolean literal BoolLit :: Bool -> Literal -- | Vector literal VecLit :: [Literal] -> Literal -- | Bit literal data Bit -- | High H :: Bit -- | Low L :: Bit -- | Undefined U :: Bit -- | High-impedance Z :: Bit vhdlMState :: Lens' NetlistState VHDLState varEnv :: Lens' NetlistState Gamma varCount :: Lens' NetlistState Int typeTranslator :: Lens' NetlistState (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) tcCache :: Lens' NetlistState (HashMap TyConName TyCon) primitives :: Lens' NetlistState PrimMap components :: Lens' NetlistState (HashMap TmName Component) cmpCount :: Lens' NetlistState Int bindings :: Lens' NetlistState (HashMap TmName (Type, Term)) instance Eq HWType instance Show HWType instance Generic HWType instance Show Modifier instance Show Bit instance Show Literal instance Show Expr instance Show Declaration instance Show Component instance Functor NetlistMonad instance Monad NetlistMonad instance Applicative NetlistMonad instance MonadState NetlistState NetlistMonad instance MonadWriter [(Identifier, HWType)] NetlistMonad instance Fresh NetlistMonad instance MonadIO NetlistMonad instance Datatype D1HWType instance Constructor C1_0HWType instance Constructor C1_1HWType instance Constructor C1_2HWType instance Constructor C1_3HWType instance Constructor C1_4HWType instance Constructor C1_5HWType instance Constructor C1_6HWType instance Constructor C1_7HWType instance Constructor C1_8HWType instance Constructor C1_9HWType instance Constructor C1_10HWType instance Constructor C1_11HWType instance Constructor C1_12HWType instance NFData Declaration instance NFData HWType instance Hashable HWType instance NFData Component -- | Type and instance definitions for Rewrite modules module CLaSH.Rewrite.Types -- | Context in which a term appears data CoreContext -- | Function position of an application AppFun :: CoreContext -- | Argument position of an application AppArg :: CoreContext -- | Function position of a type application TyAppC :: CoreContext -- | RHS of a Let-binder with the sibling LHS' LetBinding :: [Id] -> CoreContext -- | Body of a Let-binding with the bound LHS' LetBody :: [Id] -> CoreContext -- | Body of a lambda-term with the abstracted variable LamBody :: Id -> CoreContext -- | Body of a TyLambda-term with the abstracted type-variable TyLamBody :: TyVar -> CoreContext -- | RHS of a case-alternative with the variables bound by the pattern on -- the LHS CaseAlt :: [Id] -> CoreContext -- | Subject of a case-decomposition CaseScrut :: CoreContext -- | State of a rewriting session data RewriteState RewriteState :: Int -> HashMap TmName (Type, Term) -> Supply -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> (HashMap TyConName TyCon -> Term -> Term) -> RewriteState -- | Number of applied transformations _transformCounter :: RewriteState -> Int -- | Global binders _bindings :: RewriteState -> HashMap TmName (Type, Term) -- | Supply of unique numbers _uniqSupply :: RewriteState -> Supply -- | Hardcode Type -> HWType translator _typeTranslator :: RewriteState -> HashMap TyConName TyCon -> Type -> Maybe (Either String HWType) -- | TyCon cache _tcCache :: RewriteState -> HashMap TyConName TyCon -- | Hardcoded evaluator (delta-reduction) _evaluator :: RewriteState -> HashMap TyConName TyCon -> Term -> Term uniqSupply :: Lens' RewriteState Supply typeTranslator :: Lens' RewriteState (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) transformCounter :: Lens' RewriteState Int tcCache :: Lens' RewriteState (HashMap TyConName TyCon) evaluator :: Lens' RewriteState (HashMap TyConName TyCon -> Term -> Term) bindings :: Lens' RewriteState (HashMap TmName (Type, Term)) -- | Debug Message Verbosity data DebugLevel -- | Don't show debug messages DebugNone :: DebugLevel -- | Show completely normalized expressions DebugFinal :: DebugLevel -- | Names of applied transformations DebugName :: DebugLevel -- | Show sub-expressions after a successful rewrite DebugApplied :: DebugLevel -- | Show all sub-expressions on which a rewrite is attempted DebugAll :: DebugLevel -- | Read-only environment of a rewriting session newtype RewriteEnv RE :: DebugLevel -> RewriteEnv _dbgLevel :: RewriteEnv -> DebugLevel dbgLevel :: Iso' RewriteEnv DebugLevel -- | Monad that keeps track how many transformations have been applied and -- can generate fresh variables and unique identifiers type RewriteSession m = ReaderT RewriteEnv (StateT RewriteState (FreshMT m)) -- | Monad that can do the same as RewriteSession and in addition -- keeps track if a transformation/rewrite has been successfully applied. type RewriteMonad m = WriterT Any (RewriteSession m) -- | MTL convenience wrapper around RewriteMonad newtype R m a R :: RewriteMonad m a -> R m a runR :: R m a -> RewriteMonad m a -- | Monadic action that transforms a term given a certain context type Transform m = [CoreContext] -> Term -> m Term -- | A Transform action in the context of the RewriteMonad type Rewrite m = Transform (R m) instance Functor m => Functor (R m) instance (Monad m, Functor m) => Applicative (R m) instance Monad m => Monad (R m) instance Monad m => MonadReader RewriteEnv (R m) instance Monad m => MonadState RewriteState (R m) instance Monad m => MonadWriter Any (R m) instance Monad m => MonadUnique (R m) instance Monad m => Fresh (R m) instance Monad m => MonadUnique (RewriteMonad m) instance Eq DebugLevel instance Ord DebugLevel instance Eq CoreContext instance Show CoreContext -- | Types used in Normalize modules module CLaSH.Normalize.Types -- | State of the NormalizeMonad data NormalizeState NormalizeState :: HashMap TmName (Type, Term) -> Map (TmName, Int, Either Term Type) (TmName, Type) -> HashMap TmName Int -> Int -> HashMap TmName (HashMap TmName Int) -> Int -> TmName -> NormalizeState -- | Global binders _normalized :: NormalizeState -> HashMap TmName (Type, Term) -- | Cache of previously specialised functions: -- -- _specialisationCache :: NormalizeState -> Map (TmName, Int, Either Term Type) (TmName, Type) -- | Cache of how many times a function was specialized _specialisationHistory :: NormalizeState -> HashMap TmName Int -- | Number of time a function f can be specialized _specialisationLimit :: NormalizeState -> Int -- | Cache of function where inlining took place: -- -- _inlineHistory :: NormalizeState -> HashMap TmName (HashMap TmName Int) -- | Number of times a function f can be inlined in a function -- g _inlineLimit :: NormalizeState -> Int -- | Function which is currently normalized _curFun :: NormalizeState -> TmName specialisationLimit :: Lens' NormalizeState Int specialisationHistory :: Lens' NormalizeState (HashMap TmName Int) specialisationCache :: Lens' NormalizeState (Map (TmName, Int, Either Term Type) (TmName, Type)) normalized :: Lens' NormalizeState (HashMap TmName (Type, Term)) inlineLimit :: Lens' NormalizeState Int inlineHistory :: Lens' NormalizeState (HashMap TmName (HashMap TmName Int)) curFun :: Lens' NormalizeState TmName -- | State monad that stores specialisation and inlining information type NormalizeMonad = State NormalizeState -- | RewriteSession with extra Normalisation information type NormalizeSession = RewriteSession NormalizeMonad -- | A Transform action in the context of the -- RewriteMonad and NormalizeMonad type NormRewrite = Rewrite NormalizeMonad -- | Types used in BlackBox modules module CLaSH.Netlist.BlackBox.Types -- | Context used to fill in the holes of a BlackBox template data BlackBoxContext Context :: (SyncIdentifier, HWType) -> [(SyncIdentifier, HWType)] -> [Identifier] -> [(BlackBoxTemplate, BlackBoxContext)] -> BlackBoxContext -- | Result name and type result :: BlackBoxContext -> (SyncIdentifier, HWType) -- | Argument names and types inputs :: BlackBoxContext -> [(SyncIdentifier, HWType)] -- | Literal arguments (subset of inputs) litInputs :: BlackBoxContext -> [Identifier] -- | Function arguments (subset of inputs): -- -- funInputs :: BlackBoxContext -> [(BlackBoxTemplate, BlackBoxContext)] -- | Either the name of the identifier, or a tuple of the identifier and -- the corresponding clock type SyncIdentifier = Either Identifier (Identifier, (Identifier, Int)) -- | A BlackBox Template is a List of Elements type BlackBoxTemplate = [Element] -- | Elements of a blackbox context data Element -- | Constant C :: Text -> Element -- | Component instantiation hole D :: Decl -> Element -- | Output hole O :: Element -- | Input hole I :: Int -> Element -- | Literal hole L :: Int -> Element -- | Symbol hole Sym :: Int -> Element -- | Clock hole (Maybe clk corresponding to input, clk corresponding to -- output if Nothing) Clk :: (Maybe Int) -> Element -- | Reset hole Rst :: (Maybe Int) -> Element -- | Type declaration hole Typ :: (Maybe Int) -> Element -- | Type root hole TypM :: (Maybe Int) -> Element -- | Error value hole Err :: (Maybe Int) -> Element -- | Select element type from a vector type TypElem :: Element -> Element -- | Component instantiation hole. First argument indicates which function -- argument to instantiate. Second argument corresponds to output and -- input assignments, where the first element is the output assignment, -- and the subsequent elements are the consecutive input assignments. -- -- The LHS of the tuple is the name of the signal, while the RHS of the -- tuple is the type of the signal data Decl Decl :: Int -> [(BlackBoxTemplate, BlackBoxTemplate)] -> Decl -- | Monad that caches VHDL information and remembers hidden inputs of -- black boxes that are being generated (WriterT) newtype BlackBoxMonad a B :: WriterT [(Identifier, HWType)] (State VHDLState) a -> BlackBoxMonad a runBlackBoxM :: BlackBoxMonad a -> WriterT [(Identifier, HWType)] (State VHDLState) a instance Show Decl instance Show Element instance Show BlackBoxContext instance Functor BlackBoxMonad instance Applicative BlackBoxMonad instance Monad BlackBoxMonad instance MonadWriter [(Identifier, HWType)] BlackBoxMonad instance MonadState VHDLState BlackBoxMonad -- | Parser definitions for BlackBox templates module CLaSH.Netlist.BlackBox.Parser -- | Parse a text as a BlackBoxTemplate, returns a list of errors in case -- parsing fails runParse :: Text -> (BlackBoxTemplate, [Error LineColPos]) -- | Rewriting combinators and traversals module CLaSH.Rewrite.Combinators -- | Apply a transformation on the subtrees of an term allR :: (Functor m, Monad m, Fresh m) => Bool -> Transform m -> Transform m -- | Apply two transformations in succession (>->) :: Monad m => Transform m -> Transform m -> Transform m -- | Apply a transformation in a topdown traversal topdownR :: (Fresh m, Functor m, Monad m) => Transform m -> Transform m -- | Apply a transformation in a topdown traversal. Doesn't freshen bound -- variables unsafeTopdownR :: (Fresh m, Functor m, Monad m) => Transform m -> Transform m -- | Apply a transformation in a bottomup traversal bottomupR :: (Fresh m, Functor m, Monad m) => Transform m -> Transform m -- | Apply a transformation in a bottomup traversal. Doesn't freshen bound -- variables unsafeBottomupR :: (Fresh m, Functor m, Monad m) => Transform m -> Transform m -- | Only apply the second transformation if the first one succeeds. (!->) :: Monad m => Rewrite m -> Rewrite m -> Rewrite m -- | Only apply the second transformation if the first one fails. (>-!) :: Monad m => Rewrite m -> Rewrite m -> Rewrite m -- | Keep applying a transformation until it fails. repeatR :: Monad m => Rewrite m -> Rewrite m whenR :: Monad m => ([CoreContext] -> Term -> m Bool) -> Transform m -> Transform m -- | Only traverse downwards when the assertion evaluates to true bottomupWhenR :: (Monad m, Fresh m, Functor m) => ([CoreContext] -> Term -> m Bool) -> Transform m -> Transform m -- | Utilities for converting Core Type/Term to Netlist datatypes module CLaSH.Netlist.Util -- | Split a normalized term into: a list of arguments, a list of -- let-bindings, and a variable reference that is the body of the -- let-binding. Returns a String containing the error is the term was not -- in a normalized form. splitNormalized :: (Fresh m, Functor m) => HashMap TyConName TyCon -> Term -> m (Either String ([Id], [LetBinding], Id)) -- | Converts a Core type to a HWType given a function that translates -- certain builtin types. Errors if the Core type is not translatable. unsafeCoreTypeToHWType :: String -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> Type -> HWType -- | Converts a Core type to a HWType within the NetlistMonad; errors on -- failure unsafeCoreTypeToHWTypeM :: String -> Type -> NetlistMonad HWType -- | Converts a Core type to a HWType within the NetlistMonad; -- Nothing on failure coreTypeToHWTypeM :: Type -> NetlistMonad (Maybe HWType) -- | Returns the name and period of the clock corresponding to a type synchronizedClk :: HashMap TyConName TyCon -> Type -> Maybe (Identifier, Int) -- | Converts a Core type to a HWType given a function that translates -- certain builtin types. Returns a string containing the error message -- when the Core type is not translatable. coreTypeToHWType :: (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> Type -> Either String HWType -- | Converts an algebraic Core type (split into a TyCon and its argument) -- to a HWType. mkADT :: (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> String -> TyConName -> [Type] -> Either String HWType -- | Simple check if a TyCon is recursively defined. isRecursiveTy :: HashMap TyConName TyCon -> TyConName -> Bool -- | Determines if a Core type is translatable to a HWType given a function -- that translates certain builtin types. representableType :: (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> Type -> Bool -- | Determines the bitsize of a type typeSize :: HWType -> Int -- | Determines the bitsize of the constructor of a type conSize :: HWType -> Int -- | Gives the length of length-indexed types typeLength :: HWType -> Int -- | Gives the HWType corresponding to a term. Returns an error if the term -- has a Core type that is not translatable to a HWType. termHWType :: String -> Term -> NetlistMonad HWType -- | Turns a Core variable reference to a Netlist expression. Errors if the -- term is not a variable. varToExpr :: Term -> Expr -- | Uniquely rename all the variables and their references in a normalized -- term mkUniqueNormalized :: ([Id], [LetBinding], Id) -> NetlistMonad ([Id], [LetBinding], TmName) -- | Append a string to a name appendToName :: TmName -> String -> TmName -- | Preserve the Netlist _varEnv and _varCount when -- executing a monadic action preserveVarEnv :: NetlistMonad a -> NetlistMonad a dcToLiteral :: HWType -> Int -> Expr -- | Generate VHDL for assorted Netlist datatypes module CLaSH.Netlist.VHDL -- | Generate VHDL for a Netlist component genVHDL :: Component -> VHDLM (String, Doc) -- | Generate a VHDL package containing type definitions for the given -- HWTypes mkTyPackage :: [HWType] -> VHDLM Doc -- | Convert a Netlist HWType to a VHDL type vhdlType :: HWType -> VHDLM Doc -- | Convert a Netlist HWType to an error VHDL value for that type vhdlTypeErrValue :: HWType -> VHDLM Doc -- | Convert a Netlist HWType to the root of a VHDL type vhdlTypeMark :: HWType -> VHDLM Doc -- | Turn a Netlist Declaration to a VHDL concurrent block inst :: Declaration -> VHDLM (Maybe Doc) -- | Turn a Netlist expression into a VHDL expression expr :: Bool -> Expr -> VHDLM Doc -- | Utilties to verify blackbox contexts against templates and rendering -- filled in templates module CLaSH.Netlist.BlackBox.Util -- | Determine if the number of normalliteralfunction inputs of a -- blackbox context at least matches the number of argument that is -- expected by the template. verifyBlackBoxContext :: BlackBoxTemplate -> BlackBoxContext -> Bool -- | Count the number of argument tags/holes in a blackbox template countArgs :: BlackBoxTemplate -> Int -- | Counter the number of literal tags/holes in a blackbox template countLits :: BlackBoxTemplate -> Int -- | Count the number of function instantiations in a blackbox template countFuns :: BlackBoxTemplate -> Int -- | Update all the symbol references in a template, and increment the -- symbol counter for every newly encountered symbol. setSym :: Int -> BlackBoxTemplate -> (BlackBoxTemplate, Int) -- | Get the name of the clock of an identifier clkSyncId :: SyncIdentifier -> (Identifier, Int) -- | Render a blackbox given a certain context. Returns a filled out -- template and a list of hidden inputs that must be added to -- the encompassing component. renderBlackBox :: BlackBoxTemplate -> BlackBoxContext -> VHDLState -> ((Text, [(Identifier, HWType)]), VHDLState) -- | Render a single template element renderElem :: BlackBoxContext -> Element -> BlackBoxMonad Text -- | Fill out the template corresponding to an output/input assignment of a -- component instantiation, and turn it into a single identifier so it -- can be used for a new blackbox context. lineToIdentifier :: BlackBoxContext -> BlackBoxTemplate -> BlackBoxMonad SyncIdentifier lineToType :: BlackBoxContext -> BlackBoxTemplate -> BlackBoxMonad HWType -- | Give a context and a tagged hole (of a template), returns part of the -- context that matches the tag of the hole. mkSyncIdentifier :: BlackBoxContext -> Element -> BlackBoxMonad SyncIdentifier -- | Utilities for rewriting: e.g. inlining, specialisation, etc. module CLaSH.Rewrite.Util -- | Lift an action working in the inner monad to the RewriteMonad liftR :: Monad m => m a -> RewriteMonad m a -- | Lift an action working in the inner monad to the RewriteSession liftRS :: Monad m => m a -> RewriteSession m a -- | Record if a transformation is succesfully applied apply :: (Monad m, Functor m) => String -> Rewrite m -> Rewrite m -- | Perform a transformation on a Term runRewrite :: (Monad m, Functor m) => String -> Rewrite m -> Term -> RewriteSession m Term -- | Evaluate a RewriteSession to its inner monad runRewriteSession :: (Functor m, Monad m) => DebugLevel -> RewriteState -> RewriteSession m a -> m a -- | Notify that a transformation has changed the expression setChanged :: Monad m => RewriteMonad m () -- | Identity function that additionally notifies that a transformation has -- changed the expression changed :: Monad m => a -> RewriteMonad m a -- | Create a type and kind context out of a transformation context contextEnv :: [CoreContext] -> (Gamma, Delta) -- | Create a complete type and kind context out of the global binders and -- the transformation context mkEnv :: (Functor m, Monad m) => [CoreContext] -> RewriteMonad m (Gamma, Delta) -- | Make a new binder and variable reference for a term mkTmBinderFor :: (Functor m, Fresh m, MonadUnique m) => HashMap TyConName TyCon -> String -> Term -> m (Id, Term) -- | Make a new binder and variable reference for either a term or a type mkBinderFor :: (Functor m, Monad m, MonadUnique m, Fresh m) => HashMap TyConName TyCon -> String -> Either Term Type -> m (Either (Id, Term) (TyVar, Type)) -- | Make a new, unique, identifier and corresponding variable reference mkInternalVar :: (Functor m, Monad m, MonadUnique m) => String -> KindOrType -> m (Id, Term) -- | Inline the binders in a let-binding that have a certain property inlineBinders :: Monad m => (LetBinding -> RewriteMonad m Bool) -> Rewrite m -- | Substitute the RHS of the first set of Let-binders for references to -- the first set of Let-binders in: the second set of Let-binders and the -- additional term substituteBinders :: [LetBinding] -> [LetBinding] -> Term -> ([LetBinding], Term) -- | Calculate the local free variable of an expression: the free -- variables that are not bound in the global environment. localFreeVars :: (Functor m, Monad m, Collection c) => Term -> RewriteMonad m (c TyName, c TmName) -- | Lift the binders in a let-binding to a global function that have a -- certain property liftBinders :: (Functor m, Monad m) => (LetBinding -> RewriteMonad m Bool) -> Rewrite m -- | Create a global function for a Let-binding and return a Let-binding -- where the RHS is a reference to the new global function applied to the -- free variables of the original RHS liftBinding :: (Functor m, Monad m) => Gamma -> Delta -> LetBinding -> RewriteMonad m LetBinding -- | Make a global function for a name-term tuple mkFunction :: (Functor m, Monad m) => TmName -> Term -> RewriteMonad m (TmName, Type) -- | Add a function to the set of global binders addGlobalBind :: (Functor m, Monad m) => TmName -> Type -> Term -> RewriteMonad m () -- | Create a new name out of the given name, but with another unique cloneVar :: (Functor m, Monad m) => TmName -> RewriteMonad m TmName -- | Test whether a term is a variable reference to a local binder isLocalVar :: (Functor m, Monad m) => Term -> RewriteMonad m Bool -- | Determine if a term cannot be represented in hardware isUntranslatable :: (Functor m, Monad m) => Term -> RewriteMonad m Bool -- | Is the Context a Lambda/Term-abstraction context? isLambdaBodyCtx :: CoreContext -> Bool -- | Make a binder that should not be referenced mkWildValBinder :: (Functor m, Monad m, MonadUnique m) => Type -> m Id -- | Make a case-decomposition that extracts a field out of a -- (Sum-of-)Product type mkSelectorCase :: (Functor m, Monad m, MonadUnique m, Fresh m) => String -> HashMap TyConName TyCon -> [CoreContext] -> Term -> Int -> Int -> m Term -- | Specialise an application on its argument specialise :: (Functor m, MonadState s m) => Lens' s (Map (TmName, Int, Either Term Type) (TmName, Type)) -> Lens' s (HashMap TmName Int) -> Lens' s Int -> Bool -> Rewrite m -- | Specialise an application on its argument specialise' :: (Functor m, MonadState s m) => Lens' s (Map (TmName, Int, Either Term Type) (TmName, Type)) -> Lens' s (HashMap TmName Int) -> Lens' s Int -> Bool -> [CoreContext] -> Term -> (Term, [Either Term Type]) -> Either Term Type -> R m Term -- | Create binders and variable references for free variables in -- specArg specArgBndrsAndVars :: (Functor m, Monad m) => [CoreContext] -> Either Term Type -> RewriteMonad m ([Either Id TyVar], [Either Term Type]) -- | Utility functions used by the normalisation transformations module CLaSH.Normalize.Util -- | Determine if a function is already inlined in the context of the -- NetlistMonad alreadyInlined :: TmName -> NormalizeMonad (Maybe Int) addNewInline :: TmName -> NormalizeMonad () -- | Specialize under the Normalization Monad specializeNorm :: Bool -> NormRewrite -- | Determine if a term is closed isClosed :: (Functor m, Fresh m) => HashMap TyConName TyCon -> Term -> m Bool -- | Determine if a term represents a constant isConstant :: Term -> Bool -- | Create a call graph for a set of global binders, given a root callGraph :: [TmName] -> HashMap TmName (Type, Term) -> TmName -> [(TmName, [TmName])] -- | Determine the sets of recursive components given the edges of a -- callgraph recursiveComponents :: [(TmName, [TmName])] -> [[TmName]] lambdaDropPrep :: HashMap TmName (Type, Term) -> TmName -> HashMap TmName (Type, Term) lambdaDrop :: HashMap TmName (Type, Term) -> HashMap TmName [TmName] -> [TmName] -> (TmName, (Type, Term)) dominator :: HashMap TmName [TmName] -> [TmName] -> Gr TmName TmName blockSink :: HashMap TmName (Type, Term) -> Gr TmName TmName -> LNode TmName -> (TmName, (Type, Term)) -- | Functions to create BlackBox Contexts and fill in BlackBox templates module CLaSH.Netlist.BlackBox -- | Generate the context for a BlackBox instantiation. mkBlackBoxContext :: Id -> [Term] -> NetlistMonad (BlackBoxContext, [Declaration]) -- | Instantiate a BlackBox template according to the given context mkBlackBox :: Text -> BlackBoxContext -> NetlistMonad Text -- | Create an template instantiation text for an argument term mkInput :: (Term, Bool) -> MaybeT NetlistMonad ((SyncIdentifier, HWType), [Declaration]) mkPrimitive :: Bool -> Text -> [Either Term Type] -> Type -> NetlistMonad ((Expr, HWType), [Declaration]) -- | Create an template instantiation text for an argument term, given that -- the term is a literal. Returns Nothing if the term is not a -- literal. mkLitInput :: Term -> MaybeT NetlistMonad ((Identifier, HWType), [Declaration]) -- | Create an template instantiation text and a partial blackbox content -- for an argument term, given that the term is a function. Errors if the -- term is not a function mkFunInput :: Id -> Term -> MaybeT NetlistMonad ((BlackBoxTemplate, BlackBoxContext), [Declaration]) -- | Instantiate symbols references with a new symbol and increment symbol -- counter instantiateSym :: BlackBoxTemplate -> NetlistMonad BlackBoxTemplate -- | Create Netlists out of normalized CoreHW Terms module CLaSH.Netlist -- | Generate a hierarchical netlist out of a set of global binders with -- topEntity at the top. genNetlist :: Maybe VHDLState -> Maybe Int -> HashMap TmName (Type, Term) -> PrimMap -> HashMap TyConName TyCon -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> Maybe Int -> TmName -> IO ([Component], VHDLState, Int) -- | Run a NetlistMonad action in a given environment runNetlistMonad :: Maybe VHDLState -> Maybe Int -> HashMap TmName (Type, Term) -> PrimMap -> HashMap TyConName TyCon -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> NetlistMonad a -> IO (a, NetlistState) -- | Generate a component for a given function (caching) genComponent :: TmName -> Maybe Int -> NetlistMonad Component -- | Generate a component for a given function genComponentT :: TmName -> Term -> Maybe Int -> NetlistMonad Component -- | Generate a list of Declarations for a let-binder mkDeclarations :: Id -> Term -> NetlistMonad [Declaration] -- | Generate a list of Declarations for a let-binder where the RHS is a -- function application mkFunApp :: Id -> TmName -> [Term] -> NetlistMonad [Declaration] -- | Generate an expression for a term occurring on the RHS of a let-binder mkExpr :: Type -> Term -> NetlistMonad (Expr, [Declaration]) -- | Generate an expression for a DataCon application occurring on the RHS -- of a let-binder mkDcApplication :: HWType -> DataCon -> [Term] -> NetlistMonad (Expr, [Declaration]) -- | Transformations of the Normalization process module CLaSH.Normalize.Transformations -- | Propagate arguments of application inwards; except for Lam -- where the argument becomes let-bound. appProp :: NormRewrite -- | Inline non-recursive, non-representable let-bindings bindNonRep :: NormRewrite -- | Lift non-representable let-bindings liftNonRep :: NormRewrite -- | Lift the let-bindings out of the subject of a Case-decomposition caseLet :: NormRewrite -- | Specialize a Case-decomposition (replace by the RHS of an alternative) -- if the subject is (an application of) a DataCon; or if there is only a -- single alternative that doesn't reference variables bound by the -- pattern. caseCon :: NormRewrite -- | Move a Case-decomposition from the subject of a Case-decomposition to -- the alternatives caseCase :: NormRewrite -- | Inline function with a non-representable result if it's the subject of -- a Case-decomposition inlineNonRep :: NormRewrite -- | Specialize functions on their type typeSpec :: NormRewrite -- | Specialize functions on their non-representable argument nonRepSpec :: NormRewrite -- | Eta-expand top-level lambda's (DON'T use in a traversal!) etaExpansionTL :: NormRewrite -- | Bring an application of a DataCon or Primitive in ANF, when the -- argument is is considered non-representable nonRepANF :: NormRewrite -- | Inline let-bindings when the RHS is either a local variable reference -- or is constant bindConstantVar :: NormRewrite -- | Specialise functions on arguments which are constant constantSpec :: NormRewrite -- | Turn an expression into a modified ANF-form. As opposed to standard -- ANF, constants do not become let-bound. makeANF :: NormRewrite -- | Remove unused let-bindings deadCode :: NormRewrite -- | Ensure that top-level lambda's eventually bind a let-expression of -- which the body is a variable-reference. topLet :: NormRewrite -- | Turn a normalized recursive function, where the recursive calls only -- pass along the unchanged original arguments, into let-recursive -- function. This means that all recursive calls are replaced by the same -- variable reference as found in the body of the top-level -- let-expression. recToLetRec :: NormRewrite -- | Inline nullary/closed functions inlineClosed :: NormRewrite -- | Inline a function with functional arguments inlineHO :: NormRewrite -- | Inline small functions inlineSmall :: NormRewrite -- | Simplified CSE, only works on let-bindings, works from top to bottom simpleCSE :: NormRewrite reduceConst :: NormRewrite -- | Transformation process for normalization module CLaSH.Normalize.Strategy -- | Normalisation transformation normalization :: NormRewrite constantPropgation :: NormRewrite -- | Topdown traversal, stops upon first success topdownSucR :: (Functor m, Monad m) => Rewrite m -> Rewrite m innerMost :: (Functor m, Monad m) => Rewrite m -> Rewrite m applyMany :: (Functor m, Monad m) => [(String, Rewrite m)] -> Rewrite m -- | Turn CoreHW terms into normalized CoreHW Terms module CLaSH.Normalize -- | Run a NormalizeSession in a given environment runNormalization :: DebugLevel -> Supply -> HashMap TmName (Type, Term) -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> (HashMap TyConName TyCon -> Term -> Term) -> NormalizeSession a -> a normalize :: [TmName] -> NormalizeSession (HashMap TmName (Type, Term)) normalize' :: TmName -> NormalizeSession ([TmName], (TmName, (Type, Term))) -- | Rewrite a term according to the provided transformation rewriteExpr :: (String, NormRewrite) -> (String, Term) -> NormalizeSession Term -- | Check if the call graph (second argument), starting at the -- topEnity (first argument) is non-recursive. Returns the list -- of normalized terms if call graph is indeed non-recursive, errors -- otherwise. checkNonRecursive :: TmName -> HashMap TmName (Type, Term) -> HashMap TmName (Type, Term) -- | Perform general "clean up" of the normalized (non-recursive) function -- hierarchy. This includes: -- -- cleanupGraph :: TmName -> (HashMap TmName (Type, Term)) -> NormalizeSession (HashMap TmName (Type, Term)) data CallTree CLeaf :: (TmName, (Type, Term)) -> CallTree CBranch :: (TmName, (Type, Term)) -> [CallTree] -> CallTree mkCallTree :: [TmName] -> HashMap TmName (Type, Term) -> TmName -> CallTree stripArgs :: [TmName] -> [Id] -> [Either Term Type] -> Maybe [Either Term Type] flattenNode :: CallTree -> NormalizeSession (Either CallTree ((TmName, Term), [CallTree])) flattenCallTree :: CallTree -> NormalizeSession CallTree callTreeToList :: [TmName] -> CallTree -> ([TmName], [(TmName, (Type, Term))]) -- | Generate a VHDL testbench for a component given a set of stimuli and a -- set of matching expected outputs module CLaSH.Driver.TestbenchGen -- | Generate a VHDL testbench for a component given a set of stimuli and a -- set of matching expected outputs genTestBench :: DebugLevel -> Supply -> PrimMap -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> HashMap TyConName TyCon -> (HashMap TyConName TyCon -> Term -> Term) -> VHDLState -> Int -> HashMap TmName (Type, Term) -> Maybe TmName -> Maybe TmName -> Component -> IO ([Component], VHDLState) -- | Module that connects all the parts of the CLaSH compiler library module CLaSH.Driver -- | Create a set of .VHDL files for a set of functions generateVHDL :: BindingMap -> PrimMap -> HashMap TyConName TyCon -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -> (HashMap TyConName TyCon -> Term -> Term) -> DebugLevel -> IO () -- | Pretty print Components to VHDL Documents createVHDL :: VHDLState -> [Component] -> [(String, Doc)] -- | Prepares the directory for writing VHDL files. This means creating the -- dir if it does not exist and removing all existing .vhdl files from -- it. prepareDir :: String -> IO () -- | Writes a VHDL file to the given directory writeVHDL :: FilePath -> (String, Doc) -> IO ()