module CLaSH.Sized.Internal.Unsigned
  ( 
    Unsigned (..)
    
    
  , size#
    
    
  , pack#
  , unpack#
    
  , eq#
  , neq#
    
  , lt#
  , ge#
  , gt#
  , le#
    
  , enumFrom#
  , enumFromThen#
  , enumFromTo#
  , enumFromThenTo#
    
  , minBound#
  , maxBound#
    
  , (+#)
  , (-#)
  , (*#)
  , negate#
  , fromInteger#
    
  , plus#
  , minus#
  , times#
    
  , quot#
  , rem#
  , toInteger#
    
  , and#
  , or#
  , xor#
  , complement#
  , shiftL#
  , shiftR#
  , rotateL#
  , rotateR#
    
  , resize#
  )
where
import Control.DeepSeq                (NFData (..))
import Control.Lens                   (Index, Ixed (..), IxValue)
import Data.Bits                      (Bits (..), FiniteBits (..))
import Data.Data                      (Data)
import Data.Default                   (Default (..))
import Data.Proxy                     (Proxy (..))
import Text.Read                      (Read (..), ReadPrec)
import GHC.TypeLits                   (KnownNat, Nat, type (+), natVal)
import Language.Haskell.TH            (TypeQ, appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax     (Lift(..))
import Test.QuickCheck.Arbitrary      (Arbitrary (..), CoArbitrary (..),
                                       arbitraryBoundedIntegral,
                                       coarbitraryIntegral)
import CLaSH.Class.BitPack            (BitPack (..))
import CLaSH.Class.Num                (ExtendingNum (..), SaturatingNum (..),
                                       SaturationMode (..))
import CLaSH.Class.Resize             (Resize (..))
import CLaSH.Prelude.BitIndex         ((!), msb, replaceBit, split)
import CLaSH.Prelude.BitReduction     (reduceOr)
import CLaSH.Promoted.Ord             (Max)
import CLaSH.Sized.Internal.BitVector (BitVector (BV), Bit, high, low)
import qualified CLaSH.Sized.Internal.BitVector as BV
newtype Unsigned (n :: Nat) =
    
    
    U { unsafeToInteger :: Integer }
  deriving Data
size# :: KnownNat n => Unsigned n -> Int
size# u = fromInteger (natVal u)
instance NFData (Unsigned n) where
  rnf (U i) = rnf i `seq` ()
  
  
  
instance Show (Unsigned n) where
  show (U i) = show i
  
instance KnownNat n => Read (Unsigned n) where
  readPrec = fromIntegral <$> (readPrec :: ReadPrec Word)
instance BitPack (Unsigned n) where
  type BitSize (Unsigned n) = n
  pack   = pack#
  unpack = unpack#
pack# :: Unsigned n -> BitVector n
pack# (U i) = BV i
unpack# :: BitVector n -> Unsigned n
unpack# (BV i) = U i
instance Eq (Unsigned n) where
  (==) = eq#
  (/=) = neq#
eq# :: Unsigned n -> Unsigned n -> Bool
eq# (U v1) (U v2) = v1 == v2
neq# :: Unsigned n -> Unsigned n -> Bool
neq# (U v1) (U v2) = v1 /= v2
instance Ord (Unsigned n) where
  (<)  = lt#
  (>=) = ge#
  (>)  = gt#
  (<=) = le#
lt#,ge#,gt#,le# :: Unsigned n -> Unsigned n -> Bool
lt# (U n) (U m) = n < m
ge# (U n) (U m) = n >= m
gt# (U n) (U m) = n > m
le# (U n) (U m) = n <= m
instance KnownNat n => Enum (Unsigned n) where
  succ           = (+# fromInteger# 1)
  pred           = (-# fromInteger# 1)
  toEnum         = fromInteger# . toInteger
  fromEnum       = fromEnum . toInteger#
  enumFrom       = enumFrom#
  enumFromThen   = enumFromThen#
  enumFromTo     = enumFromTo#
  enumFromThenTo = enumFromThenTo#
enumFrom#       :: Unsigned n -> [Unsigned n]
enumFromThen#   :: Unsigned n -> Unsigned n -> [Unsigned n]
enumFromTo#     :: Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThenTo# :: Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n]
enumFrom# x             = map U [unsafeToInteger x ..]
enumFromThen# x y       = map U [unsafeToInteger x, unsafeToInteger y ..]
enumFromTo# x y         = map U [unsafeToInteger x .. unsafeToInteger y]
enumFromThenTo# x1 x2 y = map U [unsafeToInteger x1, unsafeToInteger x2 .. unsafeToInteger y]
instance KnownNat n => Bounded (Unsigned n) where
  minBound = minBound#
  maxBound = maxBound#
minBound# :: Unsigned n
minBound# = U 0
maxBound# :: KnownNat n => Unsigned n
maxBound# = let res = U ((2 ^ natVal res)  1) in res
instance KnownNat n => Num (Unsigned n) where
  (+)         = (+#)
  ()         = (-#)
  (*)         = (*#)
  negate      = negate#
  abs         = id
  signum bv   = resize# (unpack# (reduceOr bv))
  fromInteger = fromInteger#
(+#),(-#),(*#) :: KnownNat n => Unsigned n -> Unsigned n -> Unsigned n
(+#) (U i) (U j) = fromInteger_INLINE (i + j)
(-#) (U i) (U j) = fromInteger_INLINE (i  j)
(*#) (U i) (U j) = fromInteger_INLINE (i * j)
negate# :: KnownNat n => Unsigned n -> Unsigned n
negate# u@(U i) = sz `seq` U (sz  i)
  where
    sz = 2 ^ natVal u
fromInteger# :: KnownNat n => Integer -> Unsigned n
fromInteger# = fromInteger_INLINE
fromInteger_INLINE :: forall n . KnownNat n => Integer -> Unsigned n
fromInteger_INLINE i = sz `seq` U (i `mod` (shiftL 1 sz))
  where
    sz = fromInteger (natVal (Proxy :: Proxy n))
instance (KnownNat (1 + Max m n), KnownNat (m + n)) =>
  ExtendingNum (Unsigned m) (Unsigned n) where
  type AResult (Unsigned m) (Unsigned n) = Unsigned (1 + Max m n)
  plus  = plus#
  minus = minus#
  type MResult (Unsigned m) (Unsigned n) = Unsigned (m + n)
  times = times#
plus#, minus# :: KnownNat (1 + Max m n) => Unsigned m -> Unsigned n
              -> Unsigned (1 + Max m n)
plus# (U a) (U b) = fromInteger_INLINE (a + b)
minus# (U a) (U b) = fromInteger_INLINE (a  b)
times# :: KnownNat (m + n) => Unsigned m -> Unsigned n -> Unsigned (m + n)
times# (U a) (U b) = fromInteger_INLINE (a * b)
instance KnownNat n => Real (Unsigned n) where
  toRational = toRational . toInteger#
instance KnownNat n => Integral (Unsigned n) where
  quot        = quot#
  rem         = rem#
  div         = quot#
  mod         = rem#
  quotRem n d = (n `quot#` d,n `rem#` d)
  divMod  n d = (n `quot#` d,n `rem#` d)
  toInteger   = toInteger#
quot#,rem# :: Unsigned n -> Unsigned n -> Unsigned n
quot# (U i) (U j) = U (i `quot` j)
rem# (U i) (U j) = U (i `rem` j)
toInteger# :: Unsigned n -> Integer
toInteger# (U i) = i
instance (KnownNat n, KnownNat (n + 1), KnownNat (n + 2)) => Bits (Unsigned n) where
  (.&.)             = and#
  (.|.)             = or#
  xor               = xor#
  complement        = complement#
  zeroBits          = 0
  bit i             = replaceBit i high 0
  setBit v i        = replaceBit i high v
  clearBit v i      = replaceBit i low  v
  complementBit v i = replaceBit i (BV.complement# (v ! i)) v
  testBit v i       = v ! i == high
  bitSizeMaybe v    = Just (size# v)
  bitSize           = size#
  isSigned _        = False
  shiftL v i        = shiftL# v i
  shiftR v i        = shiftR# v i
  rotateL v i       = rotateL# v i
  rotateR v i       = rotateR# v i
  popCount u        = popCount (pack# u)
and# :: Unsigned n -> Unsigned n -> Unsigned n
and# (U v1) (U v2) = U (v1 .&. v2)
or# :: Unsigned n -> Unsigned n -> Unsigned n
or# (U v1) (U v2) = U (v1 .|. v2)
xor# :: Unsigned n -> Unsigned n -> Unsigned n
xor# (U v1) (U v2) = U (v1 `xor` v2)
complement# :: KnownNat n => Unsigned n -> Unsigned n
complement# (U i) = fromInteger_INLINE (complement i)
shiftL#, shiftR#, rotateL#, rotateR# :: KnownNat n => Unsigned n -> Int
                                     -> Unsigned n
shiftL# (U v) i
  | i < 0     = error
              $ "'shiftL undefined for negative number: " ++ show i
  | otherwise = fromInteger_INLINE (shiftL v i)
shiftR# (U v) i
  | i < 0     = error
              $ "'shiftR undefined for negative number: " ++ show i
  | otherwise = fromInteger_INLINE (shiftR v i)
rotateL# _ b | b < 0 = error "'shiftL undefined for negative numbers"
rotateL# bv@(U n) b   = fromInteger_INLINE (l .|. r)
  where
    l    = shiftL n b'
    r    = shiftR n b''
    b'   = b `mod` sz
    b''  = sz  b'
    sz   = fromInteger (natVal bv)
rotateR# _ b | b < 0 = error "'shiftR undefined for negative numbers"
rotateR# bv@(U n) b   = fromInteger_INLINE (l .|. r)
  where
    l   = shiftR n b'
    r   = shiftL n b''
    b'  = b `mod` sz
    b'' = sz  b'
    sz  = fromInteger (natVal bv)
instance (KnownNat n, KnownNat (n + 1), KnownNat (n + 2)) => FiniteBits (Unsigned n) where
  finiteBitSize = size#
instance Resize Unsigned where
  resize     = resize#
  zeroExtend = resize#
  signExtend = resize#
  truncateB  = resize#
resize# :: KnownNat m => Unsigned n -> Unsigned m
resize# (U i) = fromInteger_INLINE i
instance Default (Unsigned n) where
  def = minBound#
instance KnownNat n => Lift (Unsigned n) where
  lift u@(U i) = sigE [| fromInteger# i |] (decUnsigned (natVal u))
  
decUnsigned :: Integer -> TypeQ
decUnsigned n = appT (conT ''Unsigned) (litT $ numTyLit n)
instance (KnownNat n, KnownNat (1 + n), KnownNat (n + n)) =>
  SaturatingNum (Unsigned n) where
  satPlus SatWrap a b = a +# b
  satPlus w a b = case msb r of
                    0 -> resize# r
                    _ -> case w of
                           SatZero  -> minBound#
                           _        -> maxBound#
    where
      r = plus# a b
  satMin SatWrap a b = a -# b
  satMin _ a b = case msb r of
                    0 -> resize# r
                    _ -> minBound#
    where
      r = minus# a b
  satMult SatWrap a b = a *# b
  satMult w a b = case rL of
                    0 -> unpack# rR
                    _ -> case w of
                           SatZero  -> minBound#
                           _        -> maxBound#
    where
      r       = times# a b
      (rL,rR) = split r
instance KnownNat n => Arbitrary (Unsigned n) where
  arbitrary = arbitraryBoundedIntegral
  shrink    = BV.shrinkSizedUnsigned
instance KnownNat n => CoArbitrary (Unsigned n) where
  coarbitrary = coarbitraryIntegral
type instance Index   (Unsigned n) = Int
type instance IxValue (Unsigned n) = Bit
instance KnownNat n => Ixed (Unsigned n) where
  ix i f s = unpack# <$> BV.replaceBit# (pack# s) i
                     <$> f (BV.index# (pack# s) i)