úÎSO6J      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIFFI provisionalDon Stewart <dons@galois.com>J  !"#$%FThe acos function computes the principal value of the arc cosine of x  in the range [0, pi] &GThe asin function computes the principal value of the arc sine of x in  the range [-pi2, +pi2]. 'GThe atan function computes the principal value of the arc tangent of x  in the range [-pi2, +pi2]. (FThe atan2 function computes the principal value of the arc tangent of  y/Fx, using the signs of both arguments to determine the quadrant of the  return value. )AThe cos function computes the cosine of x (measured in radians). V A large magnitude argument may yield a result with little or no significance. For a 3 discussion of error due to roundoff, see math(3). *@The sin function computes the sine of x (measured in radians). A A large magnitude argument may yield a result with little or no H significance. For a discussion of error due to roundoff, see math(3). +CThe tan function computes the tangent of x (measured in radians). A A large magnitude argument may yield a result with little or no H significance. For a discussion of error due to roundoff, see math(3). ,7The cosh function computes the hyperbolic cosine of x. -5The sinh function computes the hyperbolic sine of x. .8The tanh function computes the hyperbolic tangent of x. /LThe exp() function computes the exponential value of the given argument x. 0Jfrexp convert floating-point number to fractional and integral components 0 frexp is not defined in the Haskell 98 report. 1QThe ldexp function multiplies a floating-point number by an integral power of 2. 0 ldexp is not defined in the Haskell 98 report. 2NThe log() function computes the value of the natural logarithm of argument x. 3QThe log10 function computes the value of the logarithm of argument x to base 10. 0 log10 is not defined in the Haskell 98 report. 4IThe modf function breaks the argument value into integral and fractional 9 parts, each of which has the same sign as the argument. / modf is not defined in the Haskell 98 report. 5<The pow function computes the value of x to the exponent y. 6>The sqrt function computes the non-negative square root of x. 7RThe ceil function returns the smallest integral value greater than or equal to x. 8LThe fabs function computes the absolute value of a floating-point number x. 9OThe floor function returns the largest integral value less than or equal to x. :=The fmod function computes the floating-point remainder of x / y. ;FThe round function returns the nearest integral value to x; if x lies O halfway between two integral values, then these functions return the integral H value with the larger absolute value (i.e., it rounds away from zero). <=The fmod function computes the floating-point remainder of x / y. =NThe erf calculates the error function of x. The error function is defined as: ; erf(x) = 2/sqrt(pi)*integral from 0 to x of exp(-t*t) dt. >DThe erfc function calculates the complementary error function of x; G that is erfc() subtracts the result of the error function erf(x) from ; 1.0. This is useful, since for large x places disappear. ?The gamma function. @JThe hypot function function computes the sqrt(x*x+y*y) in such a way that I underflow will not happen, and overflow occurs only if the final result  deserves it. O hypot(Infinity, v) = hypot(v, Infinity) = +Infinity for all v, including NaN. AGThe isinf function returns 1 if the number n is Infinity, otherwise 0. B0The isnan function returns 1 if the number n is ``not-a-number'',  otherwise 0. C/finite returns the value 1 just when -Infinity < x < +Infinity; otherwise 6 a zero is returned (when |x| = Infinity or x is NaN. D?The functions j0() and j1() compute the Bessel function of the G first kind of the order 0 and the order 1, respectively, for the real  value x E?The functions j0() and j1() compute the Bessel function of the G first kind of the order 0 and the order 1, respectively, for the real  value x FDThe functions y0() and y1() compute the linearly independent Bessel = function of the second kind of the order 0 and the order 1, H respectively, for the positive integer value x (expressed as a double) GDThe functions y0() and y1() compute the linearly independent Bessel = function of the second kind of the order 0 and the order 1, H respectively, for the positive integer value x (expressed as a double) H=yn() computes the Bessel function of the second kind for the D integer Bessel0 n for the positive integer value x (expressed as a  double). Ilgamma(x) returns ln|| (x)|. J  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJ%$&#'"(!) *+,-./0123456789:;< = > ? @ ABCDEFGHIJ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJ      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKL cmath-0.2Foreign.C.Math.Doublec_lgammac_ync_y1c_y0c_j1c_j0c_finitec_isnanc_isinfc_hypotc_gammac_erfcc_erfc_truncc_roundc_fmodc_floorc_fabsc_ceilc_sqrtc_powc_modfc_log10c_logc_ldexpc_frexpc_expc_tanhc_sinhc_coshc_tanc_sinc_cosc_atan2c_atanc_asinc_acosacosasinatanatan2cossintancoshsinhtanhexpfrexpldexploglog10modfpowsqrtceilfabsfloorfmodroundtruncerferfcgammahypotisinfisnanfinitej0j1y0y1ynlgamma