úÎm1h/b      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`aFFI provisionalDon Stewart <dons@galois.com>b  !"#$%&'()*+,-./01FThe acos function computes the principal value of the arc cosine of x  in the range [0, pi] 2GThe asin function computes the principal value of the arc sine of x in  the range [-pi2, +pi2]. 3GThe atan function computes the principal value of the arc tangent of x  in the range [-pi2, +pi2]. 4FThe atan2 function computes the principal value of the arc tangent of  y/Fx, using the signs of both arguments to determine the quadrant of the  return value. 5AThe cos function computes the cosine of x (measured in radians). V A large magnitude argument may yield a result with little or no significance. For a 3 discussion of error due to roundoff, see math(3). 6@The sin function computes the sine of x (measured in radians). A A large magnitude argument may yield a result with little or no H significance. For a discussion of error due to roundoff, see math(3). 7CThe tan function computes the tangent of x (measured in radians). A A large magnitude argument may yield a result with little or no H significance. For a discussion of error due to roundoff, see math(3). 87The cosh function computes the hyperbolic cosine of x. 95The sinh function computes the hyperbolic sine of x. :8The tanh function computes the hyperbolic tangent of x. ;LThe exp() function computes the exponential value of the given argument x. <Jfrexp convert floating-point number to fractional and integral components 0 frexp is not defined in the Haskell 98 report. =QThe ldexp function multiplies a floating-point number by an integral power of 2. 0 ldexp is not defined in the Haskell 98 report. >NThe log() function computes the value of the natural logarithm of argument x. ?QThe log10 function computes the value of the logarithm of argument x to base 10. 0 log10 is not defined in the Haskell 98 report. @IThe modf function breaks the argument value into integral and fractional 9 parts, each of which has the same sign as the argument. / modf is not defined in the Haskell 98 report. A<The pow function computes the value of x to the exponent y. B>The sqrt function computes the non-negative square root of x. CRThe ceil function returns the smallest integral value greater than or equal to x. DLThe fabs function computes the absolute value of a floating-point number x. EOThe floor function returns the largest integral value less than or equal to x. F=The fmod function computes the floating-point remainder of x / y. GFThe round function returns the nearest integral value to x; if x lies O halfway between two integral values, then these functions return the integral H value with the larger absolute value (i.e., it rounds away from zero). H=The fmod function computes the floating-point remainder of x / y. INThe erf calculates the error function of x. The error function is defined as: ; erf(x) = 2/sqrt(pi)*integral from 0 to x of exp(-t*t) dt. JDThe erfc function calculates the complementary error function of x; G that is erfc() subtracts the result of the error function erf(x) from ; 1.0. This is useful, since for large x places disappear. KThe gamma function. LJThe hypot function function computes the sqrt(x*x+y*y) in such a way that I underflow will not happen, and overflow occurs only if the final result  deserves it. O hypot(Infinity, v) = hypot(v, Infinity) = +Infinity for all v, including NaN. MGThe isinf function returns 1 if the number n is Infinity, otherwise 0. N0The isnan function returns 1 if the number n is ``not-a-number'',  otherwise 0. O/finite returns the value 1 just when -Infinity < x < +Infinity; otherwise 6 a zero is returned (when |x| = Infinity or x is NaN. P?The functions j0() and j1() compute the Bessel function of the G first kind of the order 0 and the order 1, respectively, for the real  value x Q?The functions j0() and j1() compute the Bessel function of the G first kind of the order 0 and the order 1, respectively, for the real  value x RDThe functions y0() and y1() compute the linearly independent Bessel = function of the second kind of the order 0 and the order 1, H respectively, for the positive integer value x (expressed as a double) SDThe functions y0() and y1() compute the linearly independent Bessel = function of the second kind of the order 0 and the order 1, H respectively, for the positive integer value x (expressed as a double) T=yn() computes the Bessel function of the second kind for the D integer Bessel0 n for the positive integer value x (expressed as a  double). Ulgamma(x) returns ln|| (x)|. VSThe acosh function computes the inverse hyperbolic cosine of the real argument x. WOThe asinh function computes the inverse hyperbolic sine of the real argument. XSThe atanh function computes the inverse hyperbolic tangent of the real argument x. Y/The cbrt function computes the cube root of x. Zlogb x returns x',s exponent n, a signed integer converted to $ double-precision floating-point.  logb(+-Infinity) = +Infinity; 8 logb(0) = -Infinity with a division by zero exception. [Onextafter returns the next machine representable number from x in direction y. \Dremainder returns the remainder r := x - n*y where n is the integer  nearest the exact value of xy; moreover if |n - xy| = 1/2 then n is even. 9 Consequently, the remainder is computed exactly and |r| <= |y|/2. But P remainder(x, 0) and remainder(Infinity, 0) are invalid operations that produce  a NaN. -- ]@scalb(x, n) returns x*(2**n) computed by exponent manipulation. ^9significand(x) returns sig, where x := sig * 2**n with 1 <= sig < 2. @ significand(x) is not defined when x is 0, +-Infinity, or NaN. _1copysign x y returns x with its sign changed to y's. `ilogb() returns x'!s exponent n, in integer format. F ilogb(+-Infinity) re- turns INT_MAX and ilogb(0) returns INT_MIN. aAThe rint() function returns the integral value (represented as a C double precision number) nearest to x according to the prevailing  rounding mode. b  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`ab102/3.4-5,6+7*8)9(:';&<%=$>#?"@!A BCDEFGHIJKLMNOPQRST U V W X YZ[\]^_`ab  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`ab      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcd cmath-0.3Foreign.C.Math.Doublec_rintc_ilogb c_copysign c_significandc_scalb c_remainder c_nextafterc_logbc_cbrtc_atanhc_asinhc_acoshc_lgammac_ync_y1c_y0c_j1c_j0c_finitec_isnanc_isinfc_hypotc_gammac_erfcc_erfc_truncc_roundc_fmodc_floorc_fabsc_ceilc_sqrtc_powc_modfc_log10c_logc_ldexpc_frexpc_expc_tanhc_sinhc_coshc_tanc_sinc_cosc_atan2c_atanc_asinc_acosacosasinatanatan2cossintancoshsinhtanhexpfrexpldexploglog10modfpowsqrtceilfabsfloorfmodroundtruncerferfcgammahypotisinfisnanfinitej0j1y0y1ynlgammaacoshasinhatanhcbrtlogb nextafter remainderscalb significandcopysignilogbrint