-- | Words in free groups (and free powers of cyclic groups) -- {-# LANGUAGE PatternGuards #-} module Math.Combinat.FreeGroups where -------------------------------------------------------------------------------- import Control.Monad (liftM) import Math.Combinat.Numbers -------------------------------------------------------------------------------- -- | A generator of a (free) group data Generator a = Gen a -- @a@ | Inv a -- @a^(-1)@ deriving (Eq,Ord,Show,Read) -- | A /word/, describing (non-uniquely) an element of a group. -- The identity element is represented (among others) by the empty word. type Word a = [Generator a] -------------------------------------------------------------------------------- instance Functor Generator where fmap f g = case g of Gen x -> Gen (f x) Inv y -> Inv (f y) -------------------------------------------------------------------------------- -- | The inverse of a generator inverseGen :: Generator a -> Generator a inverseGen g = case g of Gen x -> Inv x Inv x -> Gen x -- | The inverse of a word inverseWord :: Word a -> Word a inverseWord = map inverseGen . reverse -- | Lists all words of the given length (total number will be @(2g)^n@). -- The numbering of the generators is @[1..g]@. allWords :: Int -- ^ @g@ = number of generators -> Int -- ^ @n@ = length of the word -> [Word Int] allWords g = go where go 0 = [[]] go n = [ x:xs | xs <- go (n-1) , x <- elems ] elems = [ Gen a | a<-[1..g] ] ++ [ Inv a | a<-[1..g] ] -- | Lists all words of the given length which do not contain inverse generators -- (total number will be @g^n@). -- The numbering of the generators is @[1..g]@. allWordsNoInv :: Int -- ^ @g@ = number of generators -> Int -- ^ @n@ = length of the word -> [Word Int] allWordsNoInv g = go where go 0 = [[]] go n = [ x:xs | xs <- go (n-1) , x <- elems ] elems = [ Gen a | a<-[1..g] ] -------------------------------------------------------------------------------- -- * The free group on @g@ generators -- | Multiplication of the free group (returns the reduced result). It is true -- for any two words w1 and w2 that -- -- > multiplyFree (reduceWordFree w1) (reduceWord w2) = multiplyFree w1 w2 -- multiplyFree :: Eq a => Word a -> Word a -> Word a multiplyFree w1 w2 = reduceWordFree (w1++w2) -- | Reduces a word in a free group by repeatedly removing @x*x^(-1)@ and -- @x^(-1)*x@ pairs. The set of /reduced words/ forms the free group; the -- multiplication is obtained by concatenation followed by reduction. -- reduceWordFree :: Eq a => Word a -> Word a reduceWordFree = loop where loop w = case reduceStep w of Nothing -> w Just w' -> loop w' reduceStep :: Eq a => Word a -> Maybe (Word a) reduceStep = go False where go changed w = case w of (Gen x : Inv y : rest) | x==y -> go True rest (Inv x : Gen y : rest) | x==y -> go True rest (this : rest) -> liftM (this:) $ go changed rest _ -> if changed then Just w else Nothing -------------------------------------------------------------------------------- -- | Counts the number of words of length @n@ which reduce to the identity element. -- -- Generating function is @Gf_g(u) = \\frac {2g-1} { g-1 + g \\sqrt{ 1 - (8g-4)u^2 } }@ -- countIdentityWordsFree :: Int -- ^ g = number of generators in the free group -> Int -- ^ n = length of the unreduced word -> Integer countIdentityWordsFree g n = countWordReductionsFree g n 0 -- | Counts the number of words of length @n@ whose reduced form has length @k@ -- (clearly @n@ and @k@ must have the same parity for this to be nonzero): -- -- > countWordReductionsFree g n k == sum [ 1 | w <- allWords g n, k == length (reduceWordFree w) ] -- countWordReductionsFree :: Int -- ^ g = number of generators in the free group -> Int -- ^ n = length of the unreduced word -> Int -- ^ k = length of the reduced word -> Integer countWordReductionsFree gens_ nn_ kk_ | nn==0 = if k==0 then 1 else 0 | even nn && kk == 0 = sum [ ( binomial (nn-i) (n -i) * gg^(i ) * (gg-1)^(n -i ) * ( i) ) `div` (nn-i) | i<-[0..n ] ] | even nn && even kk = sum [ ( binomial (nn-i) (n-k-i) * gg^(i+1) * (gg-1)^(n+k-i-1) * (kk+i) ) `div` (nn-i) | i<-[0..n-k] ] | odd nn && odd kk = sum [ ( binomial (nn-i) (n-k-i) * gg^(i+1) * (gg-1)^(n+k-i ) * (kk+i) ) `div` (nn-i) | i<-[0..n-k] ] | otherwise = 0 where g = fromIntegral gens_ :: Integer nn = fromIntegral nn_ :: Integer kk = fromIntegral kk_ :: Integer gg = 2*g n = div nn 2 k = div kk 2 -------------------------------------------------------------------------------- -- * Free powers of cyclic groups -- | Multiplication in free products of Z2's multiplyZ2 :: Eq a => Word a -> Word a -> Word a multiplyZ2 w1 w2 = reduceWordZ2 (w1++w2) -- | Multiplication in free products of Z3's multiplyZ3 :: Eq a => Word a -> Word a -> Word a multiplyZ3 w1 w2 = reduceWordZ3 (w1++w2) -- | Multiplication in free products of Zm's multiplyZm :: Eq a => Int -> Word a -> Word a -> Word a multiplyZm k w1 w2 = reduceWordZm k (w1++w2) -------------------------------------------------------------------------------- -- | Reduces a word, where each generator @x@ satisfies the additional relation @x^2=1@ -- (that is, free products of Z2's) reduceWordZ2 :: Eq a => Word a -> Word a reduceWordZ2 = loop where loop w = case reduceStep w of Nothing -> w Just w' -> loop w' reduceStep :: Eq a => Word a -> Maybe (Word a) reduceStep = go False where go changed w = case w of (Gen x : Gen y : rest) | x==y -> go True rest (Gen x : Inv y : rest) | x==y -> go True rest (Inv x : Gen y : rest) | x==y -> go True rest (Inv x : Inv y : rest) | x==y -> go True rest (this : rest) -> liftM (this:) $ go changed rest _ -> if changed then Just w else Nothing -- | Reduces a word, where each generator @x@ satisfies the additional relation @x^3=1@ -- (that is, free products of Z3's) reduceWordZ3 :: Eq a => Word a -> Word a reduceWordZ3 = loop where loop w = case reduceStep w of Nothing -> w Just w' -> loop w' reduceStep :: Eq a => Word a -> Maybe (Word a) reduceStep = go False where go changed w = case w of (Gen x : Inv y : rest) | x==y -> go True rest (Inv x : Gen y : rest) | x==y -> go True rest (Gen x : Gen y : Gen z : rest) | x==y && y==z -> go True rest (Inv x : Inv y : Inv z : rest) | x==y && y==z -> go True rest (Gen x : Gen y : rest) | x==y -> go True (Inv x : rest) -- !!! (Inv x : Inv y : rest) | x==y -> go True (Gen x : rest) (this : rest) -> liftM (this:) $ go changed rest _ -> if changed then Just w else Nothing -- | Reduces a word, where each generator @x@ satisfies the additional relation @x^m=1@ -- (that is, free products of Zm's) reduceWordZm :: Eq a => Int -> Word a -> Word a reduceWordZm m = loop where loop w = case reduceStep w of Nothing -> w Just w' -> loop w' halfm = div m 2 -- if we encounter strictly more than m/2 equal elements in a row, we replace them by the inverses reduceStep :: Eq a => Word a -> Maybe (Word a) reduceStep = go False where go changed w = case w of (Gen x : Inv y : rest) | x==y -> go True rest (Inv x : Gen y : rest) | x==y -> go True rest -- something | Just rest <- dropk w -> go True rest something | Just (k,rest) <- dropIfMoreThanHalf w -> go True (replicate (m-k) (inverseGen (head w)) ++ rest) (this : rest) -> liftM (this:) $ go changed rest _ -> if changed then Just w else Nothing dropIfMoreThanHalf :: Eq a => Word a -> Maybe (Int, Word a) dropIfMoreThanHalf w = let (k,rest) = dropWhileEqual w in if k > halfm then Just (k,rest) else Nothing dropWhileEqual :: Eq a => Word a -> (Int, Word a) dropWhileEqual [] = (0,[]) dropWhileEqual (x0:rest) = go 1 rest where go k [] = (k,[]) go k xxs@(x:xs) = if k==m then (m,xxs) else if x==x0 then go (k+1) xs else (k,xxs) {- dropm :: Eq a => Word a -> Maybe (Word a) dropm [] = Nothing dropm (x:xs) = go (m-1) xs where go 0 rest = Just rest go j (y:ys) = if y==x then go (j-1) ys else Nothing go j [] = Nothing -} -------------------------------------------------------------------------------- -- | Counts the number of words (without inverse generators) of length @n@ -- which reduce to the identity element, using the relations @x^2=1@. -- -- Generating function is @Gf_g(u) = \\frac {2g-2} { g-2 + g \\sqrt{ 1 - (4g-4)u^2 } }@ -- -- The first few @g@ cases: -- -- > A000984 = [ countIdentityWordsZ2 2 (2*n) | n<-[0..] ] = [1,2,6,20,70,252,924,3432,12870,48620,184756...] -- > A089022 = [ countIdentityWordsZ2 3 (2*n) | n<-[0..] ] = [1,3,15,87,543,3543,23823,163719,1143999,8099511,57959535...] -- > A035610 = [ countIdentityWordsZ2 4 (2*n) | n<-[0..] ] = [1,4,28,232,2092,19864,195352,1970896,20275660,211823800,2240795848...] -- > A130976 = [ countIdentityWordsZ2 5 (2*n) | n<-[0..] ] = [1,5,45,485,5725,71445,925965,12335685,167817405,2321105525,32536755565...] -- countIdentityWordsZ2 :: Int -- ^ g = number of generators in the free group -> Int -- ^ n = length of the unreduced word -> Integer countIdentityWordsZ2 g n = countWordReductionsZ2 g n 0 -- | Counts the number of words (without inverse generators) of length @n@ whose -- reduced form in the product of Z2-s (that is, for each generator @x@ we have @x^2=1@) -- has length @k@ -- (clearly @n@ and @k@ must have the same parity for this to be nonzero): -- -- > countWordReductionsZ2 g n k == sum [ 1 | w <- allWordsNoInv g n, k == length (reduceWordZ2 w) ] -- countWordReductionsZ2 :: Int -- ^ g = number of generators in the free group -> Int -- ^ n = length of the unreduced word -> Int -- ^ k = length of the reduced word -> Integer countWordReductionsZ2 gens_ nn_ kk_ | nn==0 = if k==0 then 1 else 0 | even nn && kk == 0 = sum [ ( binomial (nn-i) (n -i) * g^(i ) * (g-1)^(n -i ) * ( i) ) `div` (nn-i) | i<-[0..n ] ] | even nn && even kk = sum [ ( binomial (nn-i) (n-k-i) * g^(i+1) * (g-1)^(n+k-i-1) * (kk+i) ) `div` (nn-i) | i<-[0..n-k] ] | odd nn && odd kk = sum [ ( binomial (nn-i) (n-k-i) * g^(i+1) * (g-1)^(n+k-i ) * (kk+i) ) `div` (nn-i) | i<-[0..n-k] ] | otherwise = 0 where g = fromIntegral gens_ :: Integer nn = fromIntegral nn_ :: Integer kk = fromIntegral kk_ :: Integer n = div nn 2 k = div kk 2 -- | Counts the number of words (without inverse generators) of length @n@ -- which reduce to the identity element, using the relations @x^3=1@. -- -- > countIdentityWordsZ3NoInv g n == sum [ 1 | w <- allWordsNoInv g n, 0 == length (reduceWordZ2 w) ] -- -- In mathematica, the formula is: @Sum[ g^k * (g-1)^(n-k) * k/n * Binomial[3*n-k-1, n-k] , {k, 1,n} ]@ -- countIdentityWordsZ3NoInv :: Int -- ^ g = number of generators in the free group -> Int -- ^ n = length of the unreduced word -> Integer countIdentityWordsZ3NoInv gens_ nn_ | nn==0 = 1 | mod nn 3 == 0 = sum [ ( binomial (3*n-i-1) (n-i) * g^i * (g-1)^(n-i) * i ) `div` n | i<-[1..n] ] | otherwise = 0 where g = fromIntegral gens_ :: Integer nn = fromIntegral nn_ :: Integer n = div nn 3 --------------------------------------------------------------------------------