-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Count, enumerate, rank and unrank combinatorial objects -- -- Counting, enumerating, ranking and unranking of combinatorial objects. -- Well-known and less well-known basic combinatoric problems and -- examples. -- -- The functions are not implemented in obviously stupid ways, but they -- are also not optimized to the maximum extent. The package is plain -- Haskell 98. -- -- See also: -- -- @package combinatorial @version 0.1.1 -- | Simulation of a game with the following rules: -- -- Players A and B alternatingly take numbers from a set of 2*n numbers. -- Player A can choose freely from the remaining numbers, whereas player -- B always chooses the maximum remaining number. How many possibly -- outcomes of the games exist? The order in which the numbers are taken -- is not respected. -- -- E-Mail by Daniel Beer from 2011-10-24. module Combinatorics.MaxNim numberOfPossibilities :: [Int] module Combinatorics.TreeDepth treeDepth :: [Rational] treeDepthSeq :: [[Integer]] -- | nodeDepth !! n !! k is the absolute frequency of nodes with -- depth k in trees with n nodes. nodeDepth :: [[Integer]] -- | nodeDegree !! n !! k is the number of nodes with outdegree k -- in a n-node tree. nodeDegreeProb :: [[Rational]] -- | expected value of node degree nodeDegreeExpect :: [Rational] module Combinatorics.Partitions -- | This is a very efficient implementation of prodLinearFactors. pentagonalPowerSeries :: [Integer] numPartitions :: [Integer] -- | Give all partitions of the natural number n with summands which are at -- least k. Not quite correct for k>n. partitionsInc :: Integral a => a -> a -> [[a]] partitionsDec :: Integral a => a -> a -> [[a]] -- | type Int is needed because of list node indexing -- --
--   QC.forAll (QC.choose (1,10)) $ \k -> QC.forAll (QC.choose (0,50)) $ \n -> Parts.partitionsInc k n == Parts.allPartitionsInc !! k !! n
--   
-- --
--   equating (take 30) (map genericLength (Parts.allPartitionsInc !! 1)) Parts.numPartitions
--   
allPartitionsInc :: [[[[Int]]]] -- |
--   QC.forAll (QC.choose (0,100)) Parts.propInfProdLinearFactors
--   
propInfProdLinearFactors :: Int -> Bool -- |
--   Parts.propPentagonalPowerSeries 1000
--   
propPentagonalPowerSeries :: Int -> Bool -- |
--   Parts.propPentagonalsDifP 10000
--   
propPentagonalsDifP :: Int -> Bool -- |
--   Parts.propPentagonalsDifN 10000
--   
propPentagonalsDifN :: Int -> Bool -- | How many possibilities are there for representing an amount of n ct by -- the Euro coins 1ct, 2ct, 5ct, 10ct, 20ct, 50ct, 100ct, 200ct? module Combinatorics.Coin values :: [Int] representationNumbersSingle :: Int -> [Integer] representationNumbers :: [Integer] -- | Count and create combinatorial objects. Also see combinat -- package. module Combinatorics -- | Generate list of all permutations of the input list. The list is -- sorted lexicographically. -- --
--   >>> Comb.permute "abc"
--   ["abc","acb","bac","bca","cab","cba"]
--   
--   >>> Comb.permute "aabc"
--   ["aabc","aacb","abac","abca","acab","acba","aabc","aacb","abac","abca","acab","acba","baac","baca","baac","baca","bcaa","bcaa","caab","caba","caab","caba","cbaa","cbaa"]
--   
-- --
--   QC.forAll (take 6 <$> QC.arbitrary :: QC.Gen [Int]) $ \xs -> allEqual $ map (\p -> sort (p xs)) $ Comb.permute : Comb.permuteFast : Comb.permuteShare : []
--   
permute :: [a] -> [[a]] -- | Generate list of all permutations of the input list. It is not -- lexicographically sorted. It is slightly faster and consumes less -- memory than the lexicographical ordering permute. permuteFast :: [a] -> [[a]] -- | All permutations share as much suffixes as possible. The reversed -- permutations are sorted lexicographically. permuteShare :: [a] -> [[a]] -- |
--   >>> Comb.permuteRep [('a',2), ('b',1), ('c',1)]
--   ["aabc","aacb","abac","abca","acab","acba","baac","baca","bcaa","caab","caba","cbaa"]
--   
-- --
--   QC.forAll (genPermuteRep  7) $ \xs -> let perms = Comb.permuteRep $ Key.nub fst xs in perms == nub perms
--   
-- --
--   QC.forAll (genPermuteRep 10) $ \xs -> let perms = Comb.permuteRep $ Key.nub fst xs in List.sort perms == Set.toList (Set.fromList perms)
--   
-- --
--   QC.forAll (genPermuteRep 10) $ isAscending . Comb.permuteRep . Key.nub fst . sort
--   
-- --
--   QC.forAll (QC.choose (0,10)) $ \n k -> Comb.choose n k == Comb.permuteRep [(False, n-k), (True, k)]
--   
permuteRep :: [(a, Int)] -> [[a]] -- |
--   >>> map (map (\b -> if b then 'x' else '.')) $ Comb.choose 5 3
--   ["..xxx",".x.xx",".xx.x",".xxx.","x..xx","x.x.x","x.xx.","xx..x","xx.x.","xxx.."]
--   
--   >>> map (map (\b -> if b then 'x' else '.')) $ Comb.choose 3 5
--   []
--   
-- --
--   QC.forAll (QC.choose (0,10)) $ \n k -> all (\x  ->  n == length x  &&  k == length (filter id x)) (Comb.choose n k)
--   
choose :: Int -> Int -> [[Bool]] -- | Generate all choices of n elements out of the list x with repetitions. -- "variation" seems to be used historically, but I like it more than -- "k-permutation". -- --
--   >>> Comb.variateRep 2 "abc"
--   ["aa","ab","ac","ba","bb","bc","ca","cb","cc"]
--   
variateRep :: Int -> [a] -> [[a]] -- | Generate all choices of n elements out of the list x without -- repetitions. -- --
--   >>> Comb.variate 2 "abc"
--   ["ab","ac","ba","bc","ca","cb"]
--   
--   >>> Comb.variate 2 "abcd"
--   ["ab","ac","ad","ba","bc","bd","ca","cb","cd","da","db","dc"]
--   
--   >>> Comb.variate 3 "abcd"
--   ["abc","abd","acb","acd","adb","adc","bac","bad","bca","bcd","bda","bdc","cab","cad","cba","cbd","cda","cdb","dab","dac","dba","dbc","dca","dcb"]
--   
-- --
--   QC.forAll genVariate $ \xs -> Comb.variate (length xs) xs == Comb.permute xs
--   
-- --
--   \xs -> equating (take 1000) (Comb.variate (length xs) xs) (Comb.permute (xs::String))
--   
variate :: Int -> [a] -> [[a]] -- | Generate all choices of n elements out of the list x respecting the -- order in x and without repetitions. -- --
--   >>> Comb.tuples 2 "abc"
--   ["ab","ac","bc"]
--   
--   >>> Comb.tuples 2 "abcd"
--   ["ab","ac","ad","bc","bd","cd"]
--   
--   >>> Comb.tuples 3 "abcd"
--   ["abc","abd","acd","bcd"]
--   
tuples :: Int -> [a] -> [[a]] -- |
--   >>> Comb.partitions "abc"
--   [("abc",""),("bc","a"),("ac","b"),("c","ab"),("ab","c"),("b","ac"),("a","bc"),("","abc")]
--   
-- --
--   QC.forAll genVariate $ \xs -> length (Comb.partitions xs)  ==  2 ^ length xs
--   
partitions :: [a] -> [([a], [a])] -- | Number of possibilities arising in rectification of a predicate in -- deductive database theory. Stefan Brass, "Logische Programmierung und -- deduktive Datenbanken", 2007, page 7-60 This is isomorphic to the -- partition of n-element sets into k non-empty -- subsets. http://oeis.org/A048993 -- --
--   >>> Comb.rectifications 4 "abc"
--   ["aabc","abac","abbc","abca","abcb","abcc"]
--   
--   >>> map (length . uncurry Comb.rectifications) $ do x<-[0..10]; y<-[0..x]; return (x,[1..y::Int])
--   [1,0,1,0,1,1,0,1,3,1,0,1,7,6,1,0,1,15,25,10,1,0,1,31,90,65,15,1,0,1,63,301,350,140,21,1,0,1,127,966,1701,1050,266,28,1,0,1,255,3025,7770,6951,2646,462,36,1,0,1,511,9330,34105,42525,22827,5880,750,45,1]
--   
-- --
--   QC.forAll (QC.choose (0,7)) $ \k xs -> isAscending . Comb.rectifications k . nub . sort $ (xs::String)
--   
rectifications :: Int -> [a] -> [[a]] -- | Their number is k^n. setPartitions :: Int -> [a] -> [[[a]]] -- | All ways of separating a list of terms into pairs. All partitions are -- given in a canonical form, sorted lexicographically. The canonical -- form is: The list of pairs is ordered with respect to the first pair -- members, and the elements in each pair are ordered. The order is -- implied by the order in the input list. -- -- http://oeis.org/A123023 pairPartitions :: [a] -> [[(a, a)]] -- |
--   chooseUnrank n k i == choose n k !! i
--   
-- --
--   QC.forAll (QC.choose (0,10)) $ \n k -> map (Comb.chooseUnrank n k) [0 .. Comb.binomial n k - 1]  ==  Comb.choose n k
--   
-- --
--   QC.forAll genChooseIndex $ \(n,k,i) -> Comb.chooseRank (Comb.chooseUnrank n k i)  ==  (n, k, i)
--   
-- --
--   \bs -> uncurry3 Comb.chooseUnrank (Comb.chooseRank bs :: (Integer, Integer, Integer))  ==  bs
--   
chooseUnrank :: Integral a => a -> a -> a -> [Bool] chooseUnrankMaybe :: Int -> Int -> Int -> Maybe [Bool] -- | https://en.wikipedia.org/wiki/Combinatorial_number_system chooseRank :: Integral a => [Bool] -> (a, a, a) -- |
--   QC.forAll (take 8 <$> QC.arbitrary) $ \xs -> length (Comb.permute xs) == Comb.factorial (length (xs::String))
--   
-- --
--   QC.forAll (take 6 <$> QC.arbitrary) $ \xs -> sum (map sum (Comb.permute xs)) == sum xs * Comb.factorial (length xs)
--   
factorial :: Integral a => a -> a -- | Pascal's triangle containing the binomial coefficients. -- --
--   QC.forAll (QC.choose (0,12)) $ \n k -> length (Comb.choose n k) == Comb.binomial n k
--   
-- --
--   QC.forAll genBinomial $ \(n,k) -> let (q, r) = divMod (Comb.factorial n) (Comb.factorial k * Comb.factorial (n-k)) in r == 0 && Comb.binomial n k == q
--   
-- --
--   QC.forAll (take 16 <$> QC.arbitrary) $ \xs k -> length (Comb.tuples k xs) == Comb.binomial (length (xs::String)) k
--   
binomial :: Integral a => a -> a -> a binomialSeq :: Integral a => a -> [a] binomialGen :: (Integral a, Fractional b) => b -> a -> b binomialSeqGen :: Fractional b => b -> [b] -- |
--   QC.forAll (genPermuteRep 10) $ \xs -> length (Comb.permuteRep xs) == Comb.multinomial (map snd xs)
--   
-- --
--   QC.forAll (QC.listOf $ QC.choose (0,300::Integer)) $ \xs -> Comb.multinomial xs == Comb.multinomial (sort xs)
--   
multinomial :: Integral a => [a] -> a -- |
--   equalFuncList Comb.factorial Comb.factorials 1000
--   
factorials :: Num a => [a] -- | Pascal's triangle containing the binomial coefficients. Only efficient -- if a prefix of all rows is required. It is not efficient for picking -- particular rows or even particular elements. -- --
--   equalFuncList2 Comb.binomial Comb.binomials 100
--   
binomials :: Num a => [[a]] -- | catalanNumber n computes the number of binary trees with -- n nodes. catalanNumber :: Integer -> Integer -- | Compute the sequence of Catalan numbers by recurrence identity. It is -- catalanNumbers !! n == catalanNumber n -- --
--   equalFuncList Comb.catalanNumber Comb.catalanNumbers 1000
--   
catalanNumbers :: Num a => [a] derangementNumber :: Integer -> Integer -- | Number of fix-point-free permutations with n elements. -- -- http://oeis.org/A000166 -- --
--   equalFuncList Comb.derangementNumber Comb.derangementNumbers 1000
--   
derangementNumbers :: Num a => [a] -- | Number of partitions of an n element set into k -- non-empty subsets. Known as Stirling numbers -- http://oeis.org/A048993. -- --
--   QC.forAll (QC.choose (0,10000)) $ \k -> QC.forAll (take 7 <$> QC.arbitrary) $ \xs -> length (Comb.setPartitions k xs) == (Comb.setPartitionNumbers !! length (xs::String) ++ repeat 0) !! k
--   
-- --
--   QC.forAll (QC.choose (0,7)) $ \k xs -> length (Comb.rectifications k xs) == (Comb.setPartitionNumbers !! k ++ repeat 0) !! length (xs::String)
--   
setPartitionNumbers :: Num a => [[a]] -- | surjectiveMappingNumber n k computes the number of surjective -- mappings from a n element set to a k element set. -- -- http://oeis.org/A019538 surjectiveMappingNumber :: Integer -> Integer -> Integer -- |
--   equalFuncList2 Comb.surjectiveMappingNumber Comb.surjectiveMappingNumbers 20
--   
surjectiveMappingNumbers :: Num a => [[a]] fibonacciNumber :: Integer -> Integer -- | Number of possibilities to compose a 2 x n rectangle of n bricks. -- --
--   |||   |--   --|
--   |||   |--   --|
--   
-- --
--   equalFuncList Comb.fibonacciNumber Comb.fibonacciNumbers 10000
--   
fibonacciNumbers :: [Integer] module Combinatorics.Permutation.WithoutSomeFixpoints -- | enumerate n xs list all permutations of xs where the -- first n elements do not keep their position (i.e. are no -- fixpoints). -- -- This is a generalization of derangement. -- -- Naive but comprehensible implementation. enumerate :: Eq a => Int -> [a] -> [[a]] -- | http://oeis.org/A047920 -- --
--   QC.forAll genPermutationWOFP $ \(k,xs) -> PermWOFP.numbers !! length xs !! k == length (PermWOFP.enumerate k xs)
--   
-- --
--   QC.forAll (QC.choose (0,100)) $ \k -> Comb.factorial (toInteger k) == PermWOFP.numbers !! k !! 0
--   
-- --
--   QC.forAll (QC.choose (0,100)) $ \k -> Comb.derangementNumber (toInteger k) == PermWOFP.numbers !! k !! k
--   
numbers :: Num a => [[a]] -- | Number of possible games as described in -- http://projecteuler.net/problem=306. module Combinatorics.PaperStripGame numbersOfGames :: [Int] numbersOfGamesSeries :: [Integer] treeOfGames :: Int -> Tree [Int] module Combinatorics.Mastermind -- | Cf. board-games package. data Eval Eval :: Int -> Eval [black, white] :: Eval -> Int -- | Given the code and a guess, compute the evaluation. -- --
--   >>> filter ((Mastermind.Eval 2 0 ==) . Mastermind.evaluate "aabbb") $ replicateM 5 ['a'..'c']
--   ["aaaaa","aaaac","aaaca","aaacc","aacaa","aacac","aacca","aaccc","acbcc","accbc","acccb","cabcc","cacbc","caccb","ccbbc","ccbcb","cccbb"]
--   
evaluate :: Ord a => [a] -> [a] -> Eval evaluateAll :: Ord a => [[a]] -> [a] -> Map Eval Int formatEvalHistogram :: Map Eval Int -> String -- | numberDistinct n k b w computes the number of matching codes, -- given that all codes have distinct symbols. n is the alphabet -- size, k the width of the code, b the number of black -- evaluation sticks and w the number of white evaluation -- sticks. -- --
--   QC.forAll genMastermindDistinct $ \(n,k,b,w) -> let alphabet = take n ['a'..]; code = take k alphabet in Mastermind.numberDistinct n k b w == (genericLength $ filter ((Mastermind.Eval b w ==) . Mastermind.evaluate code) $ Comb.variate k alphabet)
--   
numberDistinct :: Int -> Int -> Int -> Int -> Integer -- |
--   QC.forAll genMastermindDistinct $ \(n,k,_b,w) -> Mastermind.numberDistinctWhite n k w == Mastermind.numberDistinct n k 0 w
--   
numberDistinctWhite :: Int -> Int -> Int -> Integer instance GHC.Show.Show Combinatorics.Mastermind.Eval instance GHC.Classes.Ord Combinatorics.Mastermind.Eval instance GHC.Classes.Eq Combinatorics.Mastermind.Eval -- | Compute how often it happens that a Queen and a King are adjacent in a -- randomly ordered card set. module Combinatorics.CardPairs data Card Other :: Card Queen :: Card King :: Card data CardCount i CardCount :: i -> CardCount i [otherCount, queenCount, kingCount] :: CardCount i -> i charFromCard :: Card -> Char allPossibilities :: CardSet a -> [[a]] numberOfAllPossibilities :: CardCount Int -> Integer possibilitiesCardsNaive :: CardCount Int -> Integer possibilitiesCardsDynamic :: CardCount Int -> Array (CardCount Int) Integer -- | Count the number of card set orderings with adjacent queen and king. -- We return a triple where the elements count with respect to an -- additional condition: (card set starts with an ordinary card ' ', -- start with queen q, start with king k) -- --
--   allEqual [CardPairs.possibilitiesCardsBorderNaive (CardCount 2 3 5), CardPairs.possibilitiesCardsBorderDynamic (CardCount 5 5 5) ! (CardCount 2 3 5), CardPairs.possibilitiesCardsBorder2Dynamic (CardCount 5 5 5) ! (CardCount 2 3 5)]
--   
-- --
--   QC.forAll genCardCount $ \cc -> allEqual [CardPairs.possibilitiesCardsBorderNaive cc, CardPairs.possibilitiesCardsBorderDynamic cc ! cc, CardPairs.possibilitiesCardsBorder2Dynamic cc ! cc]
--   
possibilitiesCardsBorderNaive :: CardCount Int -> CardCount Integer possibilitiesCardsBorderDynamic :: CardCount Int -> Array (CardCount Int) (CardCount Integer) possibilitiesCardsBorder2Dynamic :: CardCount Int -> Array (CardCount Int) (CardCount Integer) cardSetSizeSkat :: CardCount Int numberOfPossibilitiesSkat :: Integer probabilitySkat :: Double cardSetSizeRummy :: CardCount Int numberOfPossibilitiesRummy :: Integer probabilityRummy :: Double -- | Allow both Jack and King adjacent to Queen. cardSetSizeRummyJK :: CardCount Int numberOfPossibilitiesRummyJK :: Integer probabilityRummyJK :: Double exampleOutput :: IO () adjacentCouplesSmall :: [[Card]] allPossibilitiesSmall :: [[Card]] allPossibilitiesMedium :: [[Card]] allPossibilitiesSkat :: [[Card]] instance GHC.Show.Show Combinatorics.CardPairs.Card instance GHC.Enum.Enum Combinatorics.CardPairs.Card instance GHC.Classes.Ord Combinatorics.CardPairs.Card instance GHC.Classes.Eq Combinatorics.CardPairs.Card instance GHC.Show.Show i => GHC.Show.Show (Combinatorics.CardPairs.CardCount i) instance GHC.Ix.Ix i => GHC.Ix.Ix (Combinatorics.CardPairs.CardCount i) instance GHC.Classes.Ord i => GHC.Classes.Ord (Combinatorics.CardPairs.CardCount i) instance GHC.Classes.Eq i => GHC.Classes.Eq (Combinatorics.CardPairs.CardCount i) module Combinatorics.BellNumbers -- | List of Bell numbers computed with the recursive formula given in -- Wurzel 2004-06, page 136 bellRec :: Num a => [a] -- |
--   equalFuncList (\k -> round (Bell.bellSeries (fromInteger k) :: Double)) (Bell.bellRec :: [Integer]) 20
--   
bellSeries :: (Floating a, Enum a) => Int -> a