-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Count, enumerate, rank and unrank combinatorial objects -- -- Counting, enumerating, ranking and unranking of combinatorial objects. -- Well-known and less well-known basic combinatoric problems and -- examples. -- -- The functions are not implemented in obviously stupid ways, but they -- are also not optimized to the maximum extent. The package is plain -- Haskell 98. -- -- See also: -- --
-- *Combinatorics> map (length . uncurry rectifications) $ do x<-[0..10]; y<-[0..x]; return (x,[1..y::Int]) -- [1,0,1,0,1,1,0,1,3,1,0,1,7,6,1,0,1,15,25,10,1,0,1,31,90,65,15,1,0,1,63,301,350,140,21,1,0,1,127,966,1701,1050,266,28,1,0,1,255,3025,7770,6951,2646,462,36,1,0,1,511,9330,34105,42525,22827,5880,750,45,1] --rectifications :: Int -> [a] -> [[a]] -- | Their number is k^n. setPartitions :: Int -> [a] -> [[[a]]] -- |
-- chooseUnrank n k i == choose n k !! i --chooseUnrank :: Integral a => a -> a -> a -> [Bool] chooseUnrankMaybe :: Int -> Int -> Int -> Maybe [Bool] -- | https://en.wikipedia.org/wiki/Combinatorial_number_system chooseRank :: Integral a => [Bool] -> (a, a, a) factorial :: Integral a => a -> a -- | Pascal's triangle containing the binomial coefficients. binomial :: Integral a => a -> a -> a binomialSeq :: Integral a => a -> [a] binomialGen :: (Integral a, Fractional b) => b -> a -> b binomialSeqGen :: (Fractional b) => b -> [b] multinomial :: Integral a => [a] -> a factorials :: Num a => [a] -- | Pascal's triangle containing the binomial coefficients. Only efficient -- if a prefix of all rows is required. It is not efficient for picking -- particular rows or even particular elements. binomials :: Num a => [[a]] -- | catalanNumber n computes the number of binary trees with -- n nodes. catalanNumber :: Integer -> Integer -- | Compute the sequence of Catalan numbers by recurrence identity. It is -- catalanNumbers !! n == catalanNumber n catalanNumbers :: Num a => [a] derangementNumber :: Integer -> Integer -- | Number of fix-point-free permutations with n elements. -- -- http://oeis.org/A000166 derangementNumbers :: Num a => [a] -- | Number of partitions of an n element set into k -- non-empty subsets. Known as Stirling numbers -- http://oeis.org/A048993. setPartitionNumbers :: Num a => [[a]] -- | surjectiveMappingNumber n k computes the number of surjective -- mappings from a n element set to a k element set. -- -- http://oeis.org/A019538 surjectiveMappingNumber :: Integer -> Integer -> Integer surjectiveMappingNumbers :: Num a => [[a]] fibonacciNumber :: Integer -> Integer -- | Number of possibilities to compose a 2 x n rectangle of n bricks. -- --
-- ||| |-- --| -- ||| |-- --| --fibonacciNumbers :: [Integer] module Combinatorics.Permutation.WithoutSomeFixpoints -- | enumerate n xs list all permutations of xs where the -- first n elements do not keep their position (i.e. are no -- fixpoints). -- -- This is a generalization of derangement. -- -- Naive but comprehensible implementation. enumerate :: (Eq a) => Int -> [a] -> [[a]] -- | http://oeis.org/A047920 numbers :: (Num a) => [[a]] -- | Number of possible games as described in -- http://projecteuler.net/problem=306. module Combinatorics.PaperStripGame numbersOfGames :: [Int] numbersOfGamesSeries :: [Integer] treeOfGames :: Int -> Tree [Int] module Combinatorics.Mastermind -- | Cf. board-games package. data Eval Eval :: Int -> Eval [black, white] :: Eval -> Int -- | Given the code and a guess, compute the evaluation. evaluate :: (Ord a) => [a] -> [a] -> Eval evaluateAll :: (Ord a) => [[a]] -> [a] -> Map Eval Int formatEvalHistogram :: Map Eval Int -> String -- | numberDistinct n k b w computes the number of matching codes, -- given that all codes have distinct symbols. n is the alphabet -- size, k the width of the code, b the number of black -- evaluation sticks and w the number of white evaluation -- sticks. numberDistinct :: Int -> Int -> Int -> Int -> Integer instance GHC.Show.Show Combinatorics.Mastermind.Eval instance GHC.Classes.Ord Combinatorics.Mastermind.Eval instance GHC.Classes.Eq Combinatorics.Mastermind.Eval module Combinatorics.CardPairs data Card Other :: Card Queen :: Card King :: Card data CardCount i CardCount :: i -> CardCount i [otherCount, queenCount, kingCount] :: CardCount i -> i charFromCard :: Card -> Char allPossibilities :: CardSet a -> [[a]] numberOfAllPossibilities :: CardCount Int -> Integer possibilitiesCardsNaive :: CardCount Int -> Integer possibilitiesCardsDynamic :: CardCount Int -> Array (CardCount Int) Integer -- | Count the number of card set orderings with adjacent queen and king. -- We return a triple where the elements count with respect to an -- additional condition: (card set starts with an ordinary card ' ', -- start with queen q, start with king k) possibilitiesCardsBorderNaive :: CardCount Int -> CardCount Integer possibilitiesCardsBorderDynamic :: CardCount Int -> Array (CardCount Int) (CardCount Integer) possibilitiesCardsBorder2Dynamic :: CardCount Int -> Array (CardCount Int) (CardCount Integer) cardSetSizeSkat :: CardCount Int numberOfPossibilitiesSkat :: Integer probabilitySkat :: Double cardSetSizeRummy :: CardCount Int numberOfPossibilitiesRummy :: Integer probabilityRummy :: Double -- | Allow both Jack and King adjacent to Queen. cardSetSizeRummyJK :: CardCount Int numberOfPossibilitiesRummyJK :: Integer probabilityRummyJK :: Double testCardsBorderDynamic :: (CardCount Integer, CardCount Integer, CardCount Integer) exampleOutput :: IO () adjacentCouplesSmall :: [[Card]] allPossibilitiesSmall :: [[Card]] allPossibilitiesMedium :: [[Card]] allPossibilitiesSkat :: [[Card]] instance GHC.Show.Show i => GHC.Show.Show (Combinatorics.CardPairs.CardCount i) instance GHC.Arr.Ix i => GHC.Arr.Ix (Combinatorics.CardPairs.CardCount i) instance GHC.Classes.Ord i => GHC.Classes.Ord (Combinatorics.CardPairs.CardCount i) instance GHC.Classes.Eq i => GHC.Classes.Eq (Combinatorics.CardPairs.CardCount i) instance GHC.Show.Show Combinatorics.CardPairs.Card instance GHC.Enum.Enum Combinatorics.CardPairs.Card instance GHC.Classes.Ord Combinatorics.CardPairs.Card instance GHC.Classes.Eq Combinatorics.CardPairs.Card module Combinatorics.BellNumbers bellRec :: Num a => [a] bellSeries :: (Floating a, Enum a) => Int -> a