-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Haskell 98 comonads -- -- Haskell 98 comonads @package comonad @version 0.3.0 -- | A Comonad is the categorical dual of a Monad. module Control.Comonad -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Data.Maybe.Maybe -- and System.IO.IO satisfy these laws. class Functor f :: (* -> *) fmap :: Functor f => (a -> b) -> f a -> f b (<$) :: Functor f => a -> f b -> f a -- | There are two ways to define a comonad: -- -- I. Provide definitions for extract and extend satisfying -- these laws: -- --
-- extend extract = id -- extract . extend f = f -- extend f . extend g = extend (f . extend g) ---- -- In this case, you may simply set fmap = liftW. -- -- These laws are directly analogous to the laws for monads and perhaps -- can be made clearer by viewing them as laws stating that Cokleisli -- composition must be associative, and has extract for a unit: -- --
-- f =>= extract = f -- extract =>= f = f -- (f =>= g) =>= h = f =>= (g =>= h) ---- -- II. Alternately, you may choose to provide definitions for -- fmap, extract, and duplicate satisfying these -- laws: -- --
-- extract . duplicate = id -- fmap extract . duplicate = id -- duplicate . duplicate = fmap duplicate . duplicate ---- -- In this case you may not rely on the ability to define fmap in -- terms of liftW. -- -- You may of course, choose to define both duplicate and -- extend. In that case you must also satisfy these laws: -- --
-- extend f = fmap f . duplicate -- duplicate = extend id -- fmap f = extend (f . extract) ---- -- These are the default definitions of extend andduplicate -- and the 'default' definition of liftW respectively. class Functor w => Comonad w extract :: Comonad w => w a -> a duplicate :: Comonad w => w a -> w (w a) extend :: Comonad w => (w a -> b) -> w a -> w b -- | Left-to-right Cokleisli composition (=>=) :: Comonad w => (w a -> b) -> (w b -> c) -> w a -> c -- | Right-to-left Cokleisli composition (=<=) :: Comonad w => (w b -> c) -> (w a -> b) -> w a -> c -- | extend with the arguments swapped. Dual to >>= for -- a Monad. (=>>) :: Comonad w => w a -> (w a -> b) -> w b -- | extend in operator form (<<=) :: Comonad w => (w a -> b) -> w a -> w b -- | Comonadic fixed point wfix :: Comonad w => w (w a -> a) -> a -- | A generalized comonadic list anamorphism unfoldW :: Comonad w => (w b -> (a, b)) -> w b -> [a] -- | A suitable default definition for fmap for a Comonad. -- Promotes a function to a comonad. liftW :: Comonad w => (a -> b) -> w a -> w b -- | As a symmetric semi-monoidal comonad, an instance of ComonadZip is -- required to satisfy: -- --
-- extract (a <.> b) = extract a (extract b) ---- -- Minimal definition: <.> -- -- Based on the ComonadZip from "The Essence of Dataflow Programming" by -- Tarmo Uustalu and Varmo Vene, but adapted to fit the programming style -- of Control.Applicative. class Comonad w => ComonadZip w (<.>) :: ComonadZip w => w (a -> b) -> w a -> w b (.>) :: ComonadZip w => w a -> w b -> w b (<.) :: ComonadZip w => w a -> w b -> w a -- | A variant of <.> with the arguments reversed. (<..>) :: ComonadZip w => w a -> w (a -> b) -> w b -- | Lift a binary function into a comonad with zipping liftW2 :: ComonadZip w => (a -> b -> c) -> w a -> w b -> w c -- | Lift a ternary function into a comonad with zipping liftW3 :: ComonadZip w => (a -> b -> c -> d) -> w a -> w b -> w c -> w d -- | The Cokleisli Arrows of a given Comonad newtype Cokleisli w a b Cokleisli :: (w a -> b) -> Cokleisli w a b runCokleisli :: Cokleisli w a b -> w a -> b instance Monad (Cokleisli w a) instance Functor (Cokleisli w a) instance ComonadZip d => ArrowLoop (Cokleisli d) instance Comonad w => ArrowChoice (Cokleisli w) instance Comonad w => ArrowApply (Cokleisli w) instance Comonad w => Category (Cokleisli w) instance Comonad w => Arrow (Cokleisli w) instance ComonadZip w => ComonadZip (IdentityT w) instance ComonadZip Identity instance Monoid m => ComonadZip ((->) m) instance Monoid m => ComonadZip ((,) m) instance Comonad w => Comonad (IdentityT w) instance Comonad Identity instance Monoid m => Comonad ((->) m) instance Comonad ((,) e)