-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Haskell 98 comonads -- -- Haskell 98 comonads @package comonad @version 0.6.0 -- | A Comonad is the categorical dual of a Monad. module Control.Comonad -- | There are two ways to define a comonad: -- -- I. Provide definitions for extract and extend satisfying -- these laws: -- --
-- extend extract = id -- extract . extend f = f -- extend f . extend g = extend (f . extend g) ---- -- In this case, you may simply set fmap = liftW. -- -- These laws are directly analogous to the laws for monads and perhaps -- can be made clearer by viewing them as laws stating that Cokleisli -- composition must be associative, and has extract for a unit: -- --
-- f =>= extract = f -- extract =>= f = f -- (f =>= g) =>= h = f =>= (g =>= h) ---- -- II. Alternately, you may choose to provide definitions for -- fmap, extract, and duplicate satisfying these -- laws: -- --
-- extract . duplicate = id -- fmap extract . duplicate = id -- duplicate . duplicate = fmap duplicate . duplicate ---- -- In this case you may not rely on the ability to define fmap in -- terms of liftW. -- -- You may of course, choose to define both duplicate and -- extend. In that case you must also satisfy these laws: -- --
-- extend f = fmap f . duplicate -- duplicate = extend id -- fmap f = extend (f . extract) ---- -- These are the default definitions of extend andduplicate -- and the definition of liftW respectively. class Functor w => Comonad w extract :: Comonad w => w a -> a duplicate :: Comonad w => w a -> w (w a) extend :: Comonad w => (w a -> b) -> w a -> w b -- | extend with the arguments swapped. Dual to >>= for -- a Monad. (=>>) :: Comonad w => w a -> (w a -> b) -> w b -- | extend in operator form (<<=) :: Comonad w => (w a -> b) -> w a -> w b -- | A suitable default definition for fmap for a Comonad. -- Promotes a function to a comonad. -- --
-- fmap f = extend (f . extract) --liftW :: Comonad w => (a -> b) -> w a -> w b -- | Comonadic fixed point wfix :: Comonad w => w (w a -> a) -> a -- | The Cokleisli Arrows of a given Comonad newtype Cokleisli w a b Cokleisli :: (w a -> b) -> Cokleisli w a b runCokleisli :: Cokleisli w a b -> w a -> b -- | Left-to-right Cokleisli composition (=>=) :: Comonad w => (w a -> b) -> (w b -> c) -> w a -> c -- | Right-to-left Cokleisli composition (=<=) :: Comonad w => (w b -> c) -> (w a -> b) -> w a -> c instance Monad (Cokleisli w a) instance Applicative (Cokleisli w a) instance Functor (Cokleisli w a) instance Comonad w => ArrowChoice (Cokleisli w) instance Comonad w => ArrowApply (Cokleisli w) instance Comonad w => Arrow (Cokleisli w) instance Comonad w => Category (Cokleisli w) instance Comonad w => Comonad (IdentityT w) instance Comonad Identity instance Monoid m => Comonad ((->) m) instance Comonad ((,) e)