-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Haskell 98 compatible comonads -- -- Haskell 98 compatible comonads @package comonad @version 3.0 module Control.Comonad -- | There are two ways to define a comonad: -- -- I. Provide definitions for extract and extend satisfying -- these laws: -- --
-- extend extract = id -- extract . extend f = f -- extend f . extend g = extend (f . extend g) ---- -- In this case, you may simply set fmap = liftW. -- -- These laws are directly analogous to the laws for monads and perhaps -- can be made clearer by viewing them as laws stating that Cokleisli -- composition must be associative, and has extract for a unit: -- --
-- f =>= extract = f -- extract =>= f = f -- (f =>= g) =>= h = f =>= (g =>= h) ---- -- II. Alternately, you may choose to provide definitions for -- fmap, extract, and duplicate satisfying these -- laws: -- --
-- extract . duplicate = id -- fmap extract . duplicate = id -- duplicate . duplicate = fmap duplicate . duplicate ---- -- In this case you may not rely on the ability to define fmap in -- terms of liftW. -- -- You may of course, choose to define both duplicate and -- extend. In that case you must also satisfy these laws: -- --
-- extend f = fmap f . duplicate -- duplicate = extend id -- fmap f = extend (f . extract) ---- -- These are the default definitions of extend and -- duplicate and the definition of liftW respectively. class Functor w => Comonad w where duplicate = extend id extend f = fmap f . duplicate extract :: Comonad w => w a -> a duplicate :: Comonad w => w a -> w (w a) extend :: Comonad w => (w a -> b) -> w a -> w b -- | A suitable default definition for fmap for a Comonad. -- Promotes a function to a comonad. -- --
-- fmap f = liftW f = extend (f . extract) --liftW :: Comonad w => (a -> b) -> w a -> w b -- | Comonadic fixed point à la Menendez wfix :: Comonad w => w (w a -> a) -> a -- | Comonadic fixed point à la Orchard cfix :: Comonad w => (w a -> a) -> w a -- | Left-to-right Cokleisli composition (=>=) :: Comonad w => (w a -> b) -> (w b -> c) -> w a -> c -- | Right-to-left Cokleisli composition (=<=) :: Comonad w => (w b -> c) -> (w a -> b) -> w a -> c -- | extend in operator form (<<=) :: Comonad w => (w a -> b) -> w a -> w b -- | extend with the arguments swapped. Dual to >>= for -- a Monad. (=>>) :: Comonad w => w a -> (w a -> b) -> w b -- | A ComonadApply w is a strong lax symmetric semi-monoidal -- comonad on the category Hask of Haskell types. -- -- That it to say that w is a strong lax symmetric semi-monoidal -- functor on Hask, where both extract and duplicate are symmetric -- monoidal natural transformations. -- -- Laws: -- --
-- (.) <$> u <@> v <@> w = u <@> (v <@> w) -- extract p (extract q) = extract (p <@> q) -- duplicate (p <*> q) = (\r s -> fmap (r <@> s)) <@> duplicate q <*> duplicate q ---- -- If our type is both a ComonadApply and Applicative we further require -- --
-- (<*>) = (<@>) ---- -- Finally, if you choose to define (\<\@) and -- ('>), the results of your definitions should match the -- following laws: -- --
-- a @> b = const id <$> a <@> b -- a <@ b = const <$> a <@> b --class Comonad w => ComonadApply w where a @> b = const id <$> a <@> b a <@ b = const <$> a <@> b (<@>) :: ComonadApply w => w (a -> b) -> w a -> w b (@>) :: ComonadApply w => w a -> w b -> w b (<@) :: ComonadApply w => w a -> w b -> w a -- | A variant of <@> with the arguments reversed. (<@@>) :: ComonadApply w => w a -> w (a -> b) -> w b -- | Lift a binary function into a comonad with zipping liftW2 :: ComonadApply w => (a -> b -> c) -> w a -> w b -> w c -- | Lift a ternary function into a comonad with zipping liftW3 :: ComonadApply w => (a -> b -> c -> d) -> w a -> w b -> w c -> w d -- | The Cokleisli Arrows of a given Comonad newtype Cokleisli w a b Cokleisli :: (w a -> b) -> Cokleisli w a b runCokleisli :: Cokleisli w a b -> w a -> b -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Maybe and IO -- satisfy these laws. class Functor (f :: * -> *) fmap :: Functor f => (a -> b) -> f a -> f b (<$) :: Functor f => a -> f b -> f a -- | An infix synonym for fmap. (<$>) :: Functor f => (a -> b) -> f a -> f b -- | Replace the contents of a functor uniformly with a constant value. ($>) :: Functor f => f a -> b -> f b instance Monad (Cokleisli w a) instance Applicative (Cokleisli w a) instance Functor (Cokleisli w a) instance ComonadApply w => ArrowLoop (Cokleisli w) instance Comonad w => ArrowChoice (Cokleisli w) instance Comonad w => ArrowApply (Cokleisli w) instance Comonad w => Arrow (Cokleisli w) instance Comonad w => Category (Cokleisli w) instance Typeable1 w => Typeable2 (Cokleisli w) instance ComonadApply Tree instance ComonadApply w => ComonadApply (IdentityT w) instance ComonadApply Identity instance Monoid m => ComonadApply ((->) m) instance ComonadApply NonEmpty instance Semigroup m => ComonadApply ((,) m) instance Comonad NonEmpty instance Comonad Tree instance Comonad w => Comonad (IdentityT w) instance Comonad Identity instance Monoid m => Comonad ((->) m) instance Comonad ((,) e)