-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Comonads -- -- Comonads @package comonad @version 4.2 module Data.Functor.Composition -- | We often need to distinguish between various forms of Functor-like -- composition in Haskell in order to please the type system. This lets -- us work with these representations uniformly. class Composition o decompose :: Composition o => o f g x -> f (g x) compose :: Composition o => f (g x) -> o f g x instance Composition Compose module Control.Comonad.Trans.Identity -- | The trivial monad transformer, which maps a monad to an equivalent -- monad. newtype IdentityT (m :: * -> *) a :: (* -> *) -> * -> * IdentityT :: m a -> IdentityT a runIdentityT :: IdentityT a -> m a module Control.Comonad -- | There are two ways to define a comonad: -- -- I. Provide definitions for extract and extend satisfying -- these laws: -- --
-- extend extract = id -- extract . extend f = f -- extend f . extend g = extend (f . extend g) ---- -- In this case, you may simply set fmap = liftW. -- -- These laws are directly analogous to the laws for monads and perhaps -- can be made clearer by viewing them as laws stating that Cokleisli -- composition must be associative, and has extract for a unit: -- --
-- f =>= extract = f -- extract =>= f = f -- (f =>= g) =>= h = f =>= (g =>= h) ---- -- II. Alternately, you may choose to provide definitions for -- fmap, extract, and duplicate satisfying these -- laws: -- --
-- extract . duplicate = id -- fmap extract . duplicate = id -- duplicate . duplicate = fmap duplicate . duplicate ---- -- In this case you may not rely on the ability to define fmap in -- terms of liftW. -- -- You may of course, choose to define both duplicate and -- extend. In that case you must also satisfy these laws: -- --
-- extend f = fmap f . duplicate -- duplicate = extend id -- fmap f = extend (f . extract) ---- -- These are the default definitions of extend and -- duplicate and the definition of liftW respectively. class Functor w => Comonad w where duplicate = extend id extend f = fmap f . duplicate extract :: Comonad w => w a -> a duplicate :: Comonad w => w a -> w (w a) extend :: Comonad w => (w a -> b) -> w a -> w b -- | A suitable default definition for fmap for a Comonad. -- Promotes a function to a comonad. -- -- You can only safely use to define fmap if your Comonad -- defined extend, not just duplicate, since defining -- extend in terms of duplicate uses fmap! -- --
-- fmap f = liftW f = extend (f . extract) --liftW :: Comonad w => (a -> b) -> w a -> w b -- | Comonadic fixed point à la Menendez wfix :: Comonad w => w (w a -> a) -> a -- | Comonadic fixed point à la Orchard cfix :: Comonad w => (w a -> a) -> w a -- | Left-to-right Cokleisli composition (=>=) :: Comonad w => (w a -> b) -> (w b -> c) -> w a -> c -- | Right-to-left Cokleisli composition (=<=) :: Comonad w => (w b -> c) -> (w a -> b) -> w a -> c -- | extend in operator form (<<=) :: Comonad w => (w a -> b) -> w a -> w b -- | extend with the arguments swapped. Dual to >>= for -- a Monad. (=>>) :: Comonad w => w a -> (w a -> b) -> w b -- | ComonadApply is to Comonad like Applicative -- is to Monad. -- -- Mathematically, it is a strong lax symmetric semi-monoidal comonad on -- the category Hask of Haskell types. That it to say that -- w is a strong lax symmetric semi-monoidal functor on Hask, -- where both extract and duplicate are symmetric monoidal -- natural transformations. -- -- Laws: -- --
-- (.) <$> u <@> v <@> w = u <@> (v <@> w) -- extract (p <@> q) = extract p (extract q) -- duplicate (p <@> q) = (<@>) <$> duplicate p <@> duplicate q ---- -- If our type is both a ComonadApply and Applicative we -- further require -- --
-- (<*>) = (<@>) ---- -- Finally, if you choose to define (<@) and (@>), -- the results of your definitions should match the following laws: -- --
-- a @> b = const id <$> a <@> b -- a <@ b = const <$> a <@> b --class Comonad w => ComonadApply w where a @> b = const id <$> a <@> b a <@ b = const <$> a <@> b (<@>) :: ComonadApply w => w (a -> b) -> w a -> w b (@>) :: ComonadApply w => w a -> w b -> w b (<@) :: ComonadApply w => w a -> w b -> w a -- | A variant of <@> with the arguments reversed. (<@@>) :: ComonadApply w => w a -> w (a -> b) -> w b -- | Lift a binary function into a Comonad with zipping liftW2 :: ComonadApply w => (a -> b -> c) -> w a -> w b -> w c -- | Lift a ternary function into a Comonad with zipping liftW3 :: ComonadApply w => (a -> b -> c -> d) -> w a -> w b -> w c -> w d -- | The Cokleisli Arrows of a given Comonad newtype Cokleisli w a b Cokleisli :: (w a -> b) -> Cokleisli w a b runCokleisli :: Cokleisli w a b -> w a -> b -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Maybe and IO -- satisfy these laws. class Functor (f :: * -> *) fmap :: Functor f => (a -> b) -> f a -> f b (<$) :: Functor f => a -> f b -> f a -- | An infix synonym for fmap. (<$>) :: Functor f => (a -> b) -> f a -> f b -- | Replace the contents of a functor uniformly with a constant value. ($>) :: Functor f => f a -> b -> f b instance Monad (Cokleisli w a) instance Applicative (Cokleisli w a) instance Functor (Cokleisli w a) instance ComonadApply w => ArrowLoop (Cokleisli w) instance Comonad w => ArrowChoice (Cokleisli w) instance Comonad w => ArrowApply (Cokleisli w) instance Comonad w => Arrow (Cokleisli w) instance Comonad w => Category (Cokleisli w) instance Typeable1 w => Typeable2 (Cokleisli w) instance ComonadApply Tree instance ComonadApply w => ComonadApply (IdentityT w) instance ComonadApply Identity instance Monoid m => ComonadApply ((->) m) instance ComonadApply NonEmpty instance Semigroup m => ComonadApply ((,) m) instance Comonad NonEmpty instance Comonad Tree instance Comonad w => Comonad (IdentityT w) instance Comonad (Tagged * s) instance Comonad Identity instance Monoid m => Comonad ((->) m) instance Comonad ((,) e) module Control.Comonad.Trans.Class class ComonadTrans t lower :: (ComonadTrans t, Comonad w) => t w a -> w a instance ComonadTrans IdentityT module Control.Comonad.Hoist.Class class ComonadHoist t cohoist :: (ComonadHoist t, Comonad w, Comonad v) => (forall x. w x -> v x) -> t w a -> t v a instance ComonadHoist IdentityT -- | The environment comonad holds a value along with some retrievable -- context. -- -- This module specifies the environment comonad transformer (aka -- coreader), which is left adjoint to the reader comonad. -- -- The following sets up an experiment that retains its initial value in -- the background: -- --
-- >>> let initial = env 0 0 ---- -- Extract simply retrieves the value: -- --
-- >>> extract initial -- 0 ---- -- Play around with the value, in our case producing a negative value: -- --
-- >>> let experiment = fmap (+ 10) initial -- -- >>> extract experiment -- 10 ---- -- Oh noes, something went wrong, 10 isn't very negative! Better restore -- the initial value using the default: -- --
-- >>> let initialRestored = experiment =>> ask -- -- >>> extract initialRestored -- 0 --module Control.Comonad.Trans.Env type Env e = EnvT e Identity -- | Create an Env using an environment and a value env :: e -> a -> Env e a runEnv :: Env e a -> (e, a) data EnvT e w a EnvT :: e -> (w a) -> EnvT e w a runEnvT :: EnvT e w a -> (e, w a) -- | Gets rid of the environment. This differs from extract in that -- it will not continue extracting the value from the contained comonad. lowerEnvT :: EnvT e w a -> w a -- | Retrieves the environment. ask :: EnvT e w a -> e -- | Like ask, but modifies the resulting value with a function. -- --
-- asks = f . ask --asks :: (e -> f) -> EnvT e w a -> f -- | Modifies the environment using the specified function. local :: (e -> e') -> EnvT e w a -> EnvT e' w a instance Traversable w => Traversable (EnvT e w) instance Foldable w => Foldable (EnvT e w) instance (Semigroup e, ComonadApply w) => ComonadApply (EnvT e w) instance ComonadHoist (EnvT e) instance ComonadTrans (EnvT e) instance Comonad w => Comonad (EnvT e w) instance Functor w => Functor (EnvT e w) instance (Data e, Typeable1 w, Data (w a), Data a) => Data (EnvT e w a) instance (Typeable s, Typeable1 w, Typeable a) => Typeable (EnvT s w a) instance (Typeable s, Typeable1 w) => Typeable1 (EnvT s w) -- | The store comonad holds a constant value along with a modifiable -- accessor function, which maps the stored value to the -- focus. -- -- This module defines the strict store (aka state-in-context/costate) -- comonad transformer. -- -- stored value = (1, 5), accessor = fst, resulting -- focus = 1: -- --
-- >>> :{
-- let
-- storeTuple :: Store (Int, Int) Int
-- storeTuple = store fst (1, 5)
-- :}
--
--
-- Add something to the focus:
--
--
-- >>> :{
-- let
-- addToFocus :: Int -> Store (Int, Int) Int -> Int
-- addToFocus x wa = x + extract wa
-- :}
--
--
--
-- >>> :{
-- let
-- added3 :: Store (Int, Int) Int
-- added3 = extend (addToFocus 3) storeTuple
-- :}
--
--
-- The focus of added3 is now 1 + 3 = 4. However, this action
-- changed only the accessor function and therefore the focus but not the
-- stored value:
--
-- -- >>> pos added3 -- (1,5) ---- --
-- >>> extract added3 -- 4 ---- -- The strict store (state-in-context/costate) comonad transformer is -- subject to the laws: -- --
-- x = seek (pos x) x -- y = pos (seek y x) -- seek y x = seek y (seek z x) ---- -- Thanks go to Russell O'Connor and Daniel Peebles for their help -- formulating and proving the laws for this comonad transformer. module Control.Comonad.Trans.Store type Store s = StoreT s Identity -- | Create a Store using an accessor function and a stored value store :: (s -> a) -> s -> Store s a runStore :: Store s a -> (s -> a, s) data StoreT s w a StoreT :: (w (s -> a)) -> s -> StoreT s w a runStoreT :: StoreT s w a -> (w (s -> a), s) -- | Read the stored value -- --
-- >>> pos $ store fst (1,5) -- (1,5) --pos :: StoreT s w a -> s -- | Set the stored value -- --
-- >>> pos . seek (3,7) $ store fst (1,5) -- (3,7) ---- -- Seek satisfies the law -- --
-- seek s = peek s . duplicate --seek :: s -> StoreT s w a -> StoreT s w a -- | Modify the stored value -- --
-- >>> pos . seeks swap $ store fst (1,5) -- (5,1) ---- -- Seeks satisfies the law -- --
-- seeks f = peeks f . duplicate --seeks :: (s -> s) -> StoreT s w a -> StoreT s w a -- | Peek at what the current focus would be for a different stored value -- -- Peek satisfies the law -- --
-- peek x . extend (peek y) = peek y --peek :: Comonad w => s -> StoreT s w a -> a -- | Peek at what the current focus would be if the stored value was -- modified by some function peeks :: Comonad w => (s -> s) -> StoreT s w a -> a -- | Applies a functor-valued function to the stored value, and then uses -- the new accessor to read the resulting focus. -- --
-- >>> let f x = if x > 0 then Just (x^2) else Nothing -- -- >>> experiment f $ store (+1) 2 -- Just 5 -- -- >>> experiment f $ store (+1) (-2) -- Nothing --experiment :: (Comonad w, Functor f) => (s -> f s) -> StoreT s w a -> f a instance ComonadHoist (StoreT s) instance ComonadTrans (StoreT s) instance Comonad w => Comonad (StoreT s w) instance (Applicative w, Monoid s) => Applicative (StoreT s w) instance (ComonadApply w, Semigroup s) => ComonadApply (StoreT s w) instance Functor w => Functor (StoreT s w) instance (Typeable s, Typeable1 w, Typeable a) => Typeable (StoreT s w a) instance (Typeable s, Typeable1 w) => Typeable1 (StoreT s w) -- | The trace comonad builds up a result by prepending monoidal values to -- each other. -- -- This module specifies the traced comonad transformer (aka the cowriter -- or exponential comonad transformer). module Control.Comonad.Trans.Traced type Traced m = TracedT m Identity traced :: (m -> a) -> Traced m a runTraced :: Traced m a -> m -> a newtype TracedT m w a TracedT :: w (m -> a) -> TracedT m w a runTracedT :: TracedT m w a -> w (m -> a) trace :: Comonad w => m -> TracedT m w a -> a listen :: Functor w => TracedT m w a -> TracedT m w (a, m) listens :: Functor w => (m -> b) -> TracedT m w a -> TracedT m w (a, b) censor :: Functor w => (m -> m) -> TracedT m w a -> TracedT m w a instance (Typeable s, Typeable1 w) => Typeable1 (TracedT s w) instance Distributive w => Distributive (TracedT m w) instance Monoid m => ComonadHoist (TracedT m) instance Monoid m => ComonadTrans (TracedT m) instance (Comonad w, Monoid m) => Comonad (TracedT m w) instance Applicative w => Applicative (TracedT m w) instance (ComonadApply w, Monoid m) => ComonadApply (TracedT m w) instance Functor w => Functor (TracedT m w) module Control.Comonad.Env.Class class Comonad w => ComonadEnv e w | w -> e ask :: ComonadEnv e w => w a -> e asks :: ComonadEnv e w => (e -> e') -> w a -> e' instance (ComonadEnv e w, Monoid m) => ComonadEnv e (TracedT m w) instance ComonadEnv e w => ComonadEnv e (IdentityT w) instance ComonadEnv e w => ComonadEnv e (StoreT t w) instance ComonadEnv e ((,) e) instance Comonad w => ComonadEnv e (EnvT e w) -- | The Env comonad (aka the Coreader, Environment, or Product comonad) -- -- A co-Kleisli arrow in the Env comonad is isomorphic to a Kleisli arrow -- in the reader monad. -- -- (a -> e -> m) ~ (a, e) -> m ~ Env e a -> m module Control.Comonad.Env class Comonad w => ComonadEnv e w | w -> e ask :: ComonadEnv e w => w a -> e asks :: ComonadEnv e w => (e -> e') -> w a -> e' -- | Modifies the environment using the specified function. local :: (e -> e') -> EnvT e w a -> EnvT e' w a type Env e = EnvT e Identity -- | Create an Env using an environment and a value env :: e -> a -> Env e a runEnv :: Env e a -> (e, a) data EnvT e w a EnvT :: e -> (w a) -> EnvT e w a runEnvT :: EnvT e w a -> (e, w a) module Control.Comonad.Identity module Control.Comonad.Store.Class class Comonad w => ComonadStore s w | w -> s where peeks f w = peek (f (pos w)) w seek s = peek s . duplicate seeks f = peeks f . duplicate experiment f w = fmap (`peek` w) (f (pos w)) pos :: ComonadStore s w => w a -> s peek :: ComonadStore s w => s -> w a -> a peeks :: ComonadStore s w => (s -> s) -> w a -> a seek :: ComonadStore s w => s -> w a -> w a seeks :: ComonadStore s w => (s -> s) -> w a -> w a experiment :: (ComonadStore s w, Functor f) => (s -> f s) -> w a -> f a lowerPos :: (ComonadTrans t, ComonadStore s w) => t w a -> s lowerPeek :: (ComonadTrans t, ComonadStore s w) => s -> t w a -> a instance (ComonadStore s w, Monoid m) => ComonadStore s (TracedT m w) instance ComonadStore s w => ComonadStore s (EnvT e w) instance ComonadStore s w => ComonadStore s (IdentityT w) instance Comonad w => ComonadStore s (StoreT s w) module Control.Comonad.Store class Comonad w => ComonadStore s w | w -> s where peeks f w = peek (f (pos w)) w seek s = peek s . duplicate seeks f = peeks f . duplicate experiment f w = fmap (`peek` w) (f (pos w)) pos :: ComonadStore s w => w a -> s peek :: ComonadStore s w => s -> w a -> a peeks :: ComonadStore s w => (s -> s) -> w a -> a seek :: ComonadStore s w => s -> w a -> w a seeks :: ComonadStore s w => (s -> s) -> w a -> w a experiment :: (ComonadStore s w, Functor f) => (s -> f s) -> w a -> f a type Store s = StoreT s Identity -- | Create a Store using an accessor function and a stored value store :: (s -> a) -> s -> Store s a runStore :: Store s a -> (s -> a, s) data StoreT s w a StoreT :: (w (s -> a)) -> s -> StoreT s w a runStoreT :: StoreT s w a -> (w (s -> a), s) module Control.Comonad.Traced.Class class Comonad w => ComonadTraced m w | w -> m trace :: ComonadTraced m w => m -> w a -> a traces :: ComonadTraced m w => (a -> m) -> w a -> a instance ComonadTraced m w => ComonadTraced m (StoreT s w) instance ComonadTraced m w => ComonadTraced m (EnvT e w) instance ComonadTraced m w => ComonadTraced m (IdentityT w) instance (Comonad w, Monoid m) => ComonadTraced m (TracedT m w) module Control.Comonad.Traced class Comonad w => ComonadTraced m w | w -> m trace :: ComonadTraced m w => m -> w a -> a traces :: ComonadTraced m w => (a -> m) -> w a -> a type Traced m = TracedT m Identity traced :: (m -> a) -> Traced m a runTraced :: Traced m a -> m -> a newtype TracedT m w a TracedT :: w (m -> a) -> TracedT m w a runTracedT :: TracedT m w a -> w (m -> a) module Data.Functor.Coproduct newtype Coproduct f g a Coproduct :: Either (f a) (g a) -> Coproduct f g a getCoproduct :: Coproduct f g a -> Either (f a) (g a) left :: f a -> Coproduct f g a right :: g a -> Coproduct f g a coproduct :: (f a -> b) -> (g a -> b) -> Coproduct f g a -> b instance (Eq (f a), Eq (g a)) => Eq (Coproduct f g a) instance (Ord (f a), Ord (g a)) => Ord (Coproduct f g a) instance (Read (f a), Read (g a)) => Read (Coproduct f g a) instance (Show (f a), Show (g a)) => Show (Coproduct f g a) instance (Contravariant f, Contravariant g) => Contravariant (Coproduct f g) instance (Comonad f, Comonad g) => Comonad (Coproduct f g) instance (Traversable f, Traversable g) => Traversable (Coproduct f g) instance (Foldable f, Foldable g) => Foldable (Coproduct f g) instance (Functor f, Functor g) => Functor (Coproduct f g)