| Portability | non-portable (GHC Extensions) |
|---|---|
| Stability | experimental |
| Maintainer | Patrick Bahr <paba@diku.dk> |
Data.Comp.Multi
Contents
Description
This module defines the infrastructure necessary to use compositional data types for mutually recursive data types. Examples of usage are provided below.
- module Data.Comp.Multi.Term
- module Data.Comp.Multi.Algebra
- module Data.Comp.Multi.Functor
- module Data.Comp.Multi.Sum
- module Data.Comp.Multi.Product
Examples
Pure Computations
The example below illustrates how to use generalised compositional data types to implement a small expression language, with a sub language of values, and an evaluation function mapping expressions to values.
The following language extensions are
needed in order to run the example: TemplateHaskell, TypeOperators,
MultiParamTypeClasses, FlexibleInstances, FlexibleContexts,
UndecidableInstances, and GADTs. Moreover, in order to derive instances for
GADTs, version 7 of GHC is needed.
import Data.Comp.Multi
import Data.Comp.Multi.Show ()
import Data.Comp.Derive
-- Signature for values and operators
data Value e l where
Const :: Int -> Value e Int
Pair :: e s -> e t -> Value e (s,t)
data Op e l where
Add, Mult :: e Int -> e Int -> Op e Int
Fst :: e (s,t) -> Op e s
Snd :: e (s,t) -> Op e t
-- Signature for the simple expression language
type Sig = Op :++: Value
-- Derive boilerplate code using Template Haskell (GHC 7 needed)
$(derive [instanceHFunctor, instanceHShowF, smartHConstructors]
[''Value, ''Op])
-- Term evaluation algebra
class Eval f v where
evalAlg :: HAlg f (HTerm v)
instance (Eval f v, Eval g v) => Eval (f :++: g) v where
evalAlg (HInl x) = evalAlg x
evalAlg (HInr x) = evalAlg x
-- Lift the evaluation algebra to a catamorphism
eval :: (HFunctor f, Eval f v) => HTerm f :-> HTerm v
eval = hcata evalAlg
instance (Value :<<: v) => Eval Value v where
evalAlg = hinject
instance (Value :<<: v) => Eval Op v where
evalAlg (Add x y) = iConst $ (projC x) + (projC y)
evalAlg (Mult x y) = iConst $ (projC x) * (projC y)
evalAlg (Fst x) = fst $ projP x
evalAlg (Snd x) = snd $ projP x
projC :: (Value :<<: v) => HTerm v Int -> Int
projC v = case hproject v of Just (Const n) -> n
projP :: (Value :<<: v) => HTerm v (s,t) -> (HTerm v s, HTerm v t)
projP v = case hproject v of Just (Pair x y) -> (x,y)
-- Example: evalEx = iConst 2
evalEx :: HTerm Value Int
evalEx = eval (iFst $ iPair (iConst 2) (iConst 1) :: HTerm Sig Int)
Monadic Computations
The example below illustrates how to use generalised compositional data types to implement a small expression language, with a sub language of values, and a monadic evaluation function mapping expressions to values.
The following language
extensions are needed in order to run the example: TemplateHaskell,
TypeOperators, MultiParamTypeClasses, FlexibleInstances,
FlexibleContexts, UndecidableInstances, and GADTs. Moreover, in order to
derive instances for GADTs, version 7 of GHC is needed.
import Data.Comp.Multi
import Data.Comp.Multi.Show ()
import Data.Comp.Derive
import Control.Monad (liftM)
-- Signature for values and operators
data Value e l where
Const :: Int -> Value e Int
Pair :: e s -> e t -> Value e (s,t)
data Op e l where
Add, Mult :: e Int -> e Int -> Op e Int
Fst :: e (s,t) -> Op e s
Snd :: e (s,t) -> Op e t
-- Signature for the simple expression language
type Sig = Op :++: Value
-- Derive boilerplate code using Template Haskell (GHC 7 needed)
$(derive [instanceHFunctor, instanceHTraversable, instanceHFoldable,
instanceHEqF, instanceHShowF, smartHConstructors]
[''Value, ''Op])
-- Monadic term evaluation algebra
class EvalM f v where
evalAlgM :: HAlgM Maybe f (HTerm v)
instance (EvalM f v, EvalM g v) => EvalM (f :++: g) v where
evalAlgM (HInl x) = evalAlgM x
evalAlgM (HInr x) = evalAlgM x
evalM :: (HTraversable f, EvalM f v) => HTerm f l
-> Maybe (HTerm v l)
evalM = hcataM evalAlgM
instance (Value :<<: v) => EvalM Value v where
evalAlgM = return . hinject
instance (Value :<<: v) => EvalM Op v where
evalAlgM (Add x y) = do n1 <- projC x
n2 <- projC y
return $ iConst $ n1 + n2
evalAlgM (Mult x y) = do n1 <- projC x
n2 <- projC y
return $ iConst $ n1 * n2
evalAlgM (Fst v) = liftM fst $ projP v
evalAlgM (Snd v) = liftM snd $ projP v
projC :: (Value :<<: v) => HTerm v Int -> Maybe Int
projC v = case hproject v of
Just (Const n) -> return n; _ -> Nothing
projP :: (Value :<<: v) => HTerm v (a,b) -> Maybe (HTerm v a, HTerm v b)
projP v = case hproject v of
Just (Pair x y) -> return (x,y); _ -> Nothing
-- Example: evalMEx = Just (iConst 5)
evalMEx :: Maybe (HTerm Value Int)
evalMEx = evalM ((iConst 1) `iAdd`
(iConst 2 `iMult` iConst 2) :: HTerm Sig Int)
Composing Term Homomorphisms and Algebras
The example below illustrates how to compose a term homomorphism and an algebra, exemplified via a desugaring term homomorphism and an evaluation algebra.
The following language extensions are needed in order to run the example:
TemplateHaskell, TypeOperators, MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, UndecidableInstances, and GADTs.
Moreover, in order to derive instances for GADTs, version 7 of GHC is needed.
import Data.Comp.Multi
import Data.Comp.Multi.Show ()
import Data.Comp.Derive
-- Signature for values, operators, and syntactic sugar
data Value e l where
Const :: Int -> Value e Int
Pair :: e s -> e t -> Value e (s,t)
data Op e l where
Add, Mult :: e Int -> e Int -> Op e Int
Fst :: e (s,t) -> Op e s
Snd :: e (s,t) -> Op e t
data Sugar e l where
Neg :: e Int -> Sugar e Int
Swap :: e (s,t) -> Sugar e (t,s)
-- Source position information (line number, column number)
data Pos = Pos Int Int
deriving Show
-- Signature for the simple expression language
type Sig = Op :++: Value
type SigP = Op :&&: Pos :++: Value :&&: Pos
-- Signature for the simple expression language, extended with syntactic sugar
type Sig' = Sugar :++: Op :++: Value
type SigP' = Sugar :&&: Pos :++: Op :&&: Pos :++: Value :&&: Pos
-- Derive boilerplate code using Template Haskell (GHC 7 needed)
$(derive [instanceHFunctor, instanceHTraversable, instanceHFoldable,
instanceHEqF, instanceHShowF, smartHConstructors]
[''Value, ''Op, ''Sugar])
-- Term homomorphism for desugaring of terms
class (HFunctor f, HFunctor g) => Desugar f g where
desugHom :: HTermHom f g
desugHom = desugHom' . hfmap HHole
desugHom' :: HAlg f (HContext g a)
desugHom' x = appHCxt (desugHom x)
instance (Desugar f h, Desugar g h) => Desugar (f :++: g) h where
desugHom (HInl x) = desugHom x
desugHom (HInr x) = desugHom x
desugHom' (HInl x) = desugHom' x
desugHom' (HInr x) = desugHom' x
instance (Value :<<: v, HFunctor v) => Desugar Value v where
desugHom = simpHCxt . hinj
instance (Op :<<: v, HFunctor v) => Desugar Op v where
desugHom = simpHCxt . hinj
instance (Op :<<: v, Value :<<: v, HFunctor v) => Desugar Sugar v where
desugHom' (Neg x) = iConst (-1) `iMult` x
desugHom' (Swap x) = iSnd x `iPair` iFst x
-- Term evaluation algebra
class Eval f v where
evalAlg :: HAlg f (HTerm v)
instance (Eval f v, Eval g v) => Eval (f :++: g) v where
evalAlg (HInl x) = evalAlg x
evalAlg (HInr x) = evalAlg x
instance (Value :<<: v) => Eval Value v where
evalAlg = hinject
instance (Value :<<: v) => Eval Op v where
evalAlg (Add x y) = iConst $ (projC x) + (projC y)
evalAlg (Mult x y) = iConst $ (projC x) * (projC y)
evalAlg (Fst x) = fst $ projP x
evalAlg (Snd x) = snd $ projP x
projC :: (Value :<<: v) => HTerm v Int -> Int
projC v = case hproject v of Just (Const n) -> n
projP :: (Value :<<: v) => HTerm v (s,t) -> (HTerm v s, HTerm v t)
projP v = case hproject v of Just (Pair x y) -> (x,y)
-- Compose the evaluation algebra and the desugaring homomorphism to an
-- algebra
eval :: HTerm Sig' :-> HTerm Value
eval = hcata (evalAlg `compHAlg` (desugHom :: HTermHom Sig' Sig))
-- Example: evalEx = iPair (iConst 2) (iConst 1)
evalEx :: HTerm Value (Int,Int)
evalEx = eval $ iSwap $ iPair (iConst 1) (iConst 2)
Lifting Term Homomorphisms to Products
The example below illustrates how to lift a term homomorphism to products, exemplified via a desugaring term homomorphism lifted to terms annotated with source position information.
The following language extensions are needed in order to run the example:
TemplateHaskell, TypeOperators, MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, UndecidableInstances, and GADTs.
Moreover, in order to derive instances for GADTs, version 7 of GHC is needed.
import Data.Comp.Multi
import Data.Comp.Multi.Show ()
import Data.Comp.Derive
-- Signature for values, operators, and syntactic sugar
data Value e l where
Const :: Int -> Value e Int
Pair :: e s -> e t -> Value e (s,t)
data Op e l where
Add, Mult :: e Int -> e Int -> Op e Int
Fst :: e (s,t) -> Op e s
Snd :: e (s,t) -> Op e t
data Sugar e l where
Neg :: e Int -> Sugar e Int
Swap :: e (s,t) -> Sugar e (t,s)
-- Source position information (line number, column number)
data Pos = Pos Int Int
deriving Show
-- Signature for the simple expression language
type Sig = Op :++: Value
type SigP = Op :&&: Pos :++: Value :&&: Pos
-- Signature for the simple expression language, extended with syntactic sugar
type Sig' = Sugar :++: Op :++: Value
type SigP' = Sugar :&&: Pos :++: Op :&&: Pos :++: Value :&&: Pos
-- Derive boilerplate code using Template Haskell (GHC 7 needed)
$(derive [instanceHFunctor, instanceHTraversable, instanceHFoldable,
instanceHEqF, instanceHShowF, smartHConstructors]
[''Value, ''Op, ''Sugar])
-- Term homomorphism for desugaring of terms
class (HFunctor f, HFunctor g) => Desugar f g where
desugHom :: HTermHom f g
desugHom = desugHom' . hfmap HHole
desugHom' :: HAlg f (HContext g a)
desugHom' x = appHCxt (desugHom x)
instance (Desugar f h, Desugar g h) => Desugar (f :++: g) h where
desugHom (HInl x) = desugHom x
desugHom (HInr x) = desugHom x
desugHom' (HInl x) = desugHom' x
desugHom' (HInr x) = desugHom' x
instance (Value :<<: v, HFunctor v) => Desugar Value v where
desugHom = simpHCxt . hinj
instance (Op :<<: v, HFunctor v) => Desugar Op v where
desugHom = simpHCxt . hinj
instance (Op :<<: v, Value :<<: v, HFunctor v) => Desugar Sugar v where
desugHom' (Neg x) = iConst (-1) `iMult` x
desugHom' (Swap x) = iSnd x `iPair` iFst x
-- Lift the desugaring term homomorphism to a catamorphism
desug :: HTerm Sig' :-> HTerm Sig
desug = appHTermHom desugHom
-- Example: desugEx = iPair (iConst 2) (iConst 1)
desugEx :: HTerm Sig (Int,Int)
desugEx = desug $ iSwap $ iPair (iConst 1) (iConst 2)
-- Lift desugaring to terms annotated with source positions
desugP :: HTerm SigP' :-> HTerm SigP
desugP = appHTermHom (productHTermHom desugHom)
iSwapP :: (HDistProd f p f', Sugar :<<: f) => p -> HTerm f' (a,b) -> HTerm f' (b,a)
iSwapP p x = HTerm (hinjectP p $ hinj $ Swap x)
iConstP :: (HDistProd f p f', Value :<<: f) => p -> Int -> HTerm f' Int
iConstP p x = HTerm (hinjectP p $ hinj $ Const x)
iPairP :: (HDistProd f p f', Value :<<: f) => p -> HTerm f' a -> HTerm f' b -> HTerm f' (a,b)
iPairP p x y = HTerm (hinjectP p $ hinj $ Pair x y)
iFstP :: (HDistProd f p f', Op :<<: f) => p -> HTerm f' (a,b) -> HTerm f' a
iFstP p x = HTerm (hinjectP p $ hinj $ Fst x)
iSndP :: (HDistProd f p f', Op :<<: f) => p -> HTerm f' (a,b) -> HTerm f' b
iSndP p x = HTerm (hinjectP p $ hinj $ Snd x)
-- Example: desugPEx = iPairP (Pos 1 0)
-- (iSndP (Pos 1 0) (iPairP (Pos 1 1)
-- (iConstP (Pos 1 2) 1)
-- (iConstP (Pos 1 3) 2)))
-- (iFstP (Pos 1 0) (iPairP (Pos 1 1)
-- (iConstP (Pos 1 2) 1)
-- (iConstP (Pos 1 3) 2)))
desugPEx :: HTerm SigP (Int,Int)
desugPEx = desugP $ iSwapP (Pos 1 0) (iPairP (Pos 1 1) (iConstP (Pos 1 2) 1)
(iConstP (Pos 1 3) 2))
Higher-Order Abstract Syntax
The example below illustrates how to use Higher-Order Abstract Syntax (HOAS) with generalised compositional data types.
The following language extensions are needed in order to run the example:
TemplateHaskell, TypeOperators, MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, UndecidableInstances, and GADTs.
Moreover, in order to derive instances for GADTs, version 7 of GHC is needed.
import Data.Comp.Multi
import Data.Comp.Derive
data Value e l where
Const :: Int -> Value e Int
Pair :: e s -> e t -> Value e (s,t)
data Op e l where
Add, Mult :: e Int -> e Int -> Op e Int
Fst :: e (s,t) -> Op e s
Snd :: e (s,t) -> Op e t
data Lam e l where
Lam :: (e l1 -> e l2) -> Lam e (l1 -> l2)
data App e l where
App :: e (l1 -> l2) -> e l1 -> App e l2
-- Signature for values
type Val = Lam :++: Value
-- Signature for expressions
type Sig = App :++: Op :++: Val
-- Derive boilerplate code using Template Haskell (GHC 7 needed)
$(derive [instanceHExpFunctor, smartHConstructors]
[''Value, ''Op, ''Lam, ''App])
-- Term evaluation algebra
class Eval f v where
evalAlg :: HAlg f (HTerm v)
instance (Eval f v, Eval g v) => Eval (f :++: g) v where
evalAlg (HInl x) = evalAlg x
evalAlg (HInr x) = evalAlg x
-- Lift the evaluation algebra to a catamorphism
evalE :: (HExpFunctor f, Eval f v) => HTerm f :-> HTerm v
evalE = hcataE evalAlg
instance (Value :<<: v) => Eval Value v where
evalAlg = hinject
instance (Value :<<: v) => Eval Op v where
evalAlg (Add x y) = iConst $ (projC x) + (projC y)
evalAlg (Mult x y) = iConst $ (projC x) * (projC y)
evalAlg (Fst x) = fst $ projP x
evalAlg (Snd x) = snd $ projP x
instance (Lam :<<: v) => Eval Lam v where
evalAlg = hinject
instance (Lam :<<: v) => Eval App v where
evalAlg (App x y) = (projL x) y
projC :: (Value :<<: v) => HTerm v Int -> Int
projC v = case hproject v of Just (Const n) -> n
projP :: (Value :<<: v) => HTerm v (s,t) -> (HTerm v s, HTerm v t)
projP v = case hproject v of Just (Pair x y) -> (x,y)
projL :: (Lam :<<: v) => HTerm v (l1 -> l2) -> HTerm v l1 -> HTerm v l2
projL v = case hproject v of Just (Lam f) -> f
-- Example: evalEEx = iConst 3
evalEEx :: HTerm Val Int
evalEEx = evalE (((iLam $ \x -> x) `iApp`
(iConst 1 `iAdd` iConst 2)) :: HTerm Sig Int)
module Data.Comp.Multi.Term
module Data.Comp.Multi.Algebra
module Data.Comp.Multi.Functor
module Data.Comp.Multi.Sum
module Data.Comp.Multi.Product