-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Compositional Data Types -- @package compdata @version 0.10 -- | This module defines higher-order functors (Johann, Ghani, POPL '08), -- i.e. endofunctors on the category of endofunctors. module Data.Comp.Multi.HFunctor -- | This class represents higher-order functors (Johann, Ghani, POPL '08) -- which are endofunctors on the category of endofunctors. class HFunctor h hfmap :: HFunctor h => (f :-> g) -> h f :-> h g -- | This type represents natural transformations. type (:->) f g = forall i. f i -> g i -- | This type represents co-cones from f to a. f -- :=> a is isomorphic to f :-> K a type (:=>) f a = forall i. f i -> a type NatM m f g = forall i. f i -> m (g i) -- | The identity Functor. newtype I a I :: a -> I a unI :: I a -> a -- | The parametrised constant functor. newtype K a i K :: a -> K a i unK :: K a i -> a data A f A :: (forall i. f i) -> A f unA :: A f -> forall i. f i data E f E :: f i -> E f unE :: E f -> f i runE :: (f :=> b) -> E f -> b -- | This data type denotes the composition of two functor families. data (:.:) f (g :: (* -> *) -> (* -> *)) (e :: * -> *) t Comp :: (f (g e) t) -> (:.:) f t instance [incoherent] Functor I instance [incoherent] Foldable I instance [incoherent] Traversable I instance [incoherent] Functor (K a) instance [incoherent] Foldable (K a) instance [incoherent] Traversable (K a) instance [incoherent] Functor f => HFunctor (Compose f) instance [incoherent] Ord a => Ord (K a i) instance [incoherent] Eq a => Eq (K a i) -- | This module defines higher-order foldable functors. module Data.Comp.Multi.HFoldable -- | Higher-order functors that can be folded. -- -- Minimal complete definition: hfoldMap or hfoldr. class HFunctor h => HFoldable h where hfold = hfoldMap unK hfoldMap f = hfoldr (mappend . f) mempty hfoldr f z t = appEndo (hfoldMap (Endo . f) t) z hfoldl f z t = appEndo (getDual (hfoldMap (Dual . Endo . flip f) t)) z hfoldr1 f xs = fromMaybe (error "hfoldr1: empty structure") (hfoldr mf Nothing xs) where mf :: K a :=> (Maybe a -> Maybe a) mf (K x) Nothing = Just x mf (K x) (Just y) = Just (f x y) hfoldl1 f xs = fromMaybe (error "hfoldl1: empty structure") (hfoldl mf Nothing xs) where mf :: Maybe a -> K a :=> Maybe a mf Nothing (K y) = Just y mf (Just x) (K y) = Just (f x y) hfold :: (HFoldable h, Monoid m) => h (K m) :=> m hfoldMap :: (HFoldable h, Monoid m) => (a :=> m) -> h a :=> m hfoldr :: HFoldable h => (a :=> (b -> b)) -> b -> h a :=> b hfoldl :: HFoldable h => (b -> a :=> b) -> b -> h a :=> b hfoldr1 :: HFoldable h => (a -> a -> a) -> h (K a) :=> a hfoldl1 :: HFoldable h => (a -> a -> a) -> h (K a) :=> a kfoldr :: HFoldable f => (a -> b -> b) -> b -> f (K a) :=> b kfoldl :: HFoldable f => (b -> a -> b) -> b -> f (K a) :=> b htoList :: HFoldable f => f a :=> [E a] -- | This module defines higher-order traversable functors. module Data.Comp.Multi.HTraversable class HFoldable t => HTraversable t hmapM :: (HTraversable t, Monad m) => NatM m a b -> NatM m (t a) (t b) htraverse :: (HTraversable t, Applicative f) => NatM f a b -> NatM f (t a) (t b) -- | This module provides functionality to construct mappings from -- positions in a functorial value. module Data.Comp.Multi.Mapping -- | This type is used for numbering components of a functorial value. data Numbered a i Numbered :: Int -> (a i) -> Numbered a i unNumbered :: Numbered a :-> a -- | This function numbers the components of the given functorial value -- with consecutive integers starting at 0. number :: HTraversable f => f a :-> f (Numbered a) class HFoldable t => HTraversable t class Mapping m (k :: * -> *) | m -> k (&) :: Mapping m k => m v -> m v -> m v (|->) :: Mapping m k => k i -> v -> m v empty :: Mapping m k => m v prodMap :: Mapping m k => v1 -> v2 -> m v1 -> m v2 -> m (v1, v2) findWithDefault :: Mapping m k => a -> k i -> m a -> a lookupNumMap :: a -> Int -> NumMap t a -> a instance Functor (NumMap k) instance Mapping (NumMap k) (Numbered k) -- | This module defines the central notion of mutual recursive (or, -- higher-order) terms and its generalisation to (higher-order) -- contexts. All definitions are generalised versions of those in -- Data.Comp.Term. module Data.Comp.Multi.Term -- | This data type represents contexts over a signature. Contexts are -- terms containing zero or more holes. The first type parameter is -- supposed to be one of the phantom types Hole and NoHole. -- The second parameter is the signature of the context. The third -- parameter is the type family of the holes. The last parameter is the -- index/label. data Cxt h f a i Term :: f (Cxt h f a) i -> Cxt h f a i Hole :: a i -> Cxt Hole f a i -- | Phantom type that signals that a Cxt might contain holes. data Hole -- | Phantom type that signals that a Cxt does not contain holes. data NoHole -- | A context might contain holes. type Context = Cxt Hole -- | A (higher-order) term is a context with no holes. type Term f = Cxt NoHole f (K ()) type Const (f :: (* -> *) -> * -> *) = f (K ()) -- | This function converts a constant to a term. This assumes that the -- argument is indeed a constant, i.e. does not have a value for the -- argument type of the functor f. constTerm :: HFunctor f => Const f :-> Term f -- | This function unravels the given term at the topmost layer. unTerm :: Term f t -> f (Term f) t -- | Cast a term over a signature to a context over the same signature. toCxt :: HFunctor f => Term f :-> Context f a simpCxt :: HFunctor f => f a i -> Context f a i instance HTraversable f => HTraversable (Cxt h f) instance HFoldable f => HFoldable (Cxt h f) instance HFunctor f => HFunctor (Cxt h f) -- | This module provides a generic projection function pr for -- arbitrary nested binary products. module Data.Comp.Projection -- | This function projects the component of type e out or the -- compound value of type p. pr :: p :< q => q -> p -- | The constraint e :< p expresses that e is a -- component of the type p. That is, p is formed by -- binary products using the type e. The occurrence of -- e must be unique. For example we have Int :< -- (Bool,(Int,Bool)) but not Bool :< (Bool,(Int,Bool)). type (:<) f g = Proj (ComprEmb (Elem f g)) f g instance (Proj ('Found p1) f1 g, Proj ('Found p2) f2 g) => Proj ('Found ('Sum p1 p2)) (f1, f2) g instance Proj ('Found p) f g => Proj ('Found ('Ri p)) f (g', g) instance Proj ('Found p) f g => Proj ('Found ('Le p)) f (g, g') instance Proj ('Found 'Here) f f -- | This module provides functionality to construct mappings from -- positions in a functorial value. module Data.Comp.Mapping -- | This type is used for numbering components of a functorial value. data Numbered a Numbered :: Int -> a -> Numbered a unNumbered :: Numbered a -> a -- | This function numbers the components of the given functorial value -- with consecutive integers starting at 0. number :: Traversable f => f a -> f (Numbered a) -- | Functors representing data structures that can be traversed from left -- to right. -- -- Minimal complete definition: traverse or sequenceA. -- -- A definition of traverse must satisfy the following laws: -- --
-- t :: (Applicative f, Applicative g) => f a -> g a ---- -- preserving the Applicative operations, i.e. -- -- -- -- and the identity functor Identity and composition of functors -- Compose are defined as -- --
-- newtype Identity a = Identity a -- -- instance Functor Identity where -- fmap f (Identity x) = Identity (f x) -- -- instance Applicative Indentity where -- pure x = Identity x -- Identity f <*> Identity x = Identity (f x) -- -- newtype Compose f g a = Compose (f (g a)) -- -- instance (Functor f, Functor g) => Functor (Compose f g) where -- fmap f (Compose x) = Compose (fmap (fmap f) x) -- -- instance (Applicative f, Applicative g) => Applicative (Compose f g) where -- pure x = Compose (pure (pure x)) -- Compose f <*> Compose x = Compose ((<*>) <$> f <*> x) ---- -- (The naturality law is implied by parametricity.) -- -- Instances are similar to Functor, e.g. given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Traversable Tree where -- traverse f Empty = pure Empty -- traverse f (Leaf x) = Leaf <$> f x -- traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r ---- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Apply a class name to type arguments to construct a type class -- constraint. mkClassP :: Name -> [Type] -> Pred -- | This function checks whether the given type constraint is an equality -- constraint. If so, the types of the equality constraint are returned. isEqualP :: Pred -> Maybe (Type, Type) -- | This function lifts type class instances over sums ofsignatures. To -- this end it assumes that it contains only methods with types of the -- form f t1 .. tn -> t where f is the signature -- that is used to construct sums. Since this function is generic it -- assumes as its first argument the name of the function that is used to -- lift methods over sums i.e. a function of type -- --
-- (f t1 .. tn -> t) -> (g t1 .. tn -> t) -> ((f :+: g) t1 .. tn -> t) ---- -- where :+: is the sum type constructor. The second argument to -- this function is expected to be the name of that constructor. The last -- argument is the name of the class whose instances should be lifted -- over sums. liftSumGen :: Name -> Name -> Name -> Q [Dec] findSig :: [Name] -> [Dec] -> Q (Maybe ([Name], [Name])) -- | This module provides operators on functors. module Data.Comp.Ops -- | Formal sum of signatures (functors). data (:+:) f g e Inl :: (f e) -> (:+:) f g e Inr :: (g e) -> (:+:) f g e fromInl :: (f :+: g) e -> Maybe (f e) fromInr :: (f :+: g) e -> Maybe (g e) -- | Utility function to case on a functor sum, without exposing the -- internal representation of sums. caseF :: (f a -> b) -> (g a -> b) -> (f :+: g) a -> b class Subsume (e :: Emb) (f :: * -> *) (g :: * -> *) inj' :: Subsume e f g => Proxy e -> f a -> g a prj' :: Subsume e f g => Proxy e -> g a -> Maybe (f a) -- | A constraint f :<: g expresses that the signature -- f is subsumed by g, i.e. f can be used to -- construct elements in g. type (:<:) f g = Subsume (ComprEmb (Elem f g)) f g inj :: f :<: g => f a -> g a proj :: f :<: g => g a -> Maybe (f a) type (:=:) f g = (f :<: g, g :<: f) spl :: f :=: (f1 :+: f2) => (f1 a -> b) -> (f2 a -> b) -> f a -> b -- | Formal product of signatures (functors). data (:*:) f g a (:*:) :: f a -> g a -> (:*:) f g a ffst :: (f :*: g) a -> f a fsnd :: (f :*: g) a -> g a -- | This data type adds a constant product (annotation) to a signature. data (:&:) f a e (:&:) :: f e -> a -> (:&:) f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a -> s' a projectA :: DistAnn s p s' => s' a -> (s a, p) class RemA s s' | s -> s' remA :: RemA s s' => s a -> s' a instance DistAnn s p s' => DistAnn (f :+: s) p ((f :&: p) :+: s') instance DistAnn f p (f :&: p) instance RemA (f :&: p) f instance RemA s s' => RemA ((f :&: p) :+: s) (f :+: s') instance Traversable f => Traversable (f :&: a) instance Foldable f => Foldable (f :&: a) instance Functor f => Functor (f :&: a) instance (Traversable f, Traversable g) => Traversable (f :*: g) instance (Foldable f, Foldable g) => Foldable (f :*: g) instance (Functor f, Functor g) => Functor (f :*: g) instance (Subsume ('Found p1) f1 g, Subsume ('Found p2) f2 g) => Subsume ('Found ('Sum p1 p2)) (f1 :+: f2) g instance Subsume ('Found p) f g => Subsume ('Found ('Ri p)) f (g' :+: g) instance Subsume ('Found p) f g => Subsume ('Found ('Le p)) f (g :+: g') instance Subsume ('Found 'Here) f f instance (Traversable f, Traversable g) => Traversable (f :+: g) instance (Foldable f, Foldable g) => Foldable (f :+: g) instance (Functor f, Functor g) => Functor (f :+: g) -- | This module defines the notion of algebras and catamorphisms, and -- their generalizations to e.g. monadic versions and other (co)recursion -- schemes. All definitions are generalised versions of those in -- Data.Comp.Algebra. module Data.Comp.Multi.Algebra -- | This type represents multisorted f-algebras with a family -- e of carriers. type Alg f e = f e :-> e -- | Construct a catamorphism for contexts over f with holes of -- type b, from the given algebra. free :: HFunctor f => Alg f b -> (a :-> b) -> Cxt h f a :-> b -- | Construct a catamorphism from the given algebra. cata :: HFunctor f => Alg f a -> Term f :-> a -- | A generalisation of cata from terms over f to contexts -- over f, where the holes have the type of the algebra carrier. cata' :: HFunctor f => Alg f e -> Cxt h f e :-> e -- | This function applies a whole context into another context. appCxt :: HFunctor f => Context f (Cxt h f a) :-> Cxt h f a -- | This type represents a monadic algebra. It is similar to Alg -- but the return type is monadic. type AlgM m f e = NatM m (f e) e -- | Construct a monadic catamorphism for contexts over f with -- holes of type b, from the given monadic algebra. freeM :: (HTraversable f, Monad m) => AlgM m f b -> NatM m a b -> NatM m (Cxt h f a) b -- | This is a monadic version of cata. cataM :: (HTraversable f, Monad m) => AlgM m f a -> NatM m (Term f) a cataM' :: (Monad m, HTraversable f) => AlgM m f a -> NatM m (Cxt h f a) a -- | This function lifts a many-sorted algebra to a monadic domain. liftMAlg :: (Monad m, HTraversable f) => Alg f I -> Alg f m -- | This type represents context function. type CxtFun f g = forall h. SigFun (Cxt h f) (Cxt h g) -- | This type represents uniform signature function specification. type SigFun f g = forall (a :: * -> *). f a :-> g a -- | This type represents term homomorphisms. type Hom f g = SigFun f (Context g) -- | This function applies the given term homomorphism to a term/context. appHom :: (HFunctor f, HFunctor g) => Hom f g -> CxtFun f g -- | This function applies the given term homomorphism to a term/context. -- This is the top-down variant of appHom. appHom' :: HFunctor g => Hom f g -> CxtFun f g -- | This function composes two term algebras. compHom :: (HFunctor g, HFunctor h) => Hom g h -> Hom f g -> Hom f h -- | This function applies a signature function to the given context. appSigFun :: HFunctor f => SigFun f g -> CxtFun f g -- | This function applies a signature function to the given context. This -- is the top-down variant of appSigFun. appSigFun' :: HFunctor g => SigFun f g -> CxtFun f g -- | This function composes two signature functions. compSigFun :: SigFun g h -> SigFun f g -> SigFun f h -- | Lifts the given signature function to the canonical term homomorphism. hom :: HFunctor g => SigFun f g -> Hom f g -- | This function composes a term algebra with an algebra. compAlg :: HFunctor g => Alg g a -> Hom f g -> Alg f a -- | This type represents monadic context function. type CxtFunM m f g = forall h. SigFunM m (Cxt h f) (Cxt h g) -- | This type represents monadic signature functions. type SigFunM m f g = forall (a :: * -> *). NatM m (f a) (g a) -- | This type represents monadic term algebras. type HomM m f g = SigFunM m f (Context g) -- | This function lifts the given signature function to a monadic -- signature function. Note that term algebras are instances of signature -- functions. Hence this function also applies to term algebras. sigFunM :: Monad m => SigFun f g -> SigFunM m f g -- | This function lifts the give monadic signature function to a monadic -- term algebra. hom' :: (HFunctor f, HFunctor g, Monad m) => SigFunM m f g -> HomM m f g -- | This function applies the given monadic term homomorphism to the given -- term/context. appHomM :: (HTraversable f, HFunctor g, Monad m) => HomM m f g -> CxtFunM m f g -- | This function applies the given monadic term homomorphism to the given -- term/context. This is a top-down variant of appHomM. appHomM' :: (HTraversable g, Monad m) => HomM m f g -> CxtFunM m f g -- | This function lifts the given signature function to a monadic term -- algebra. homM :: (HFunctor g, Monad m) => SigFun f g -> HomM m f g -- | This function applies the given monadic signature function to the -- given context. appSigFunM :: (HTraversable f, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies the given monadic signature function to the -- given context. This is a top-down variant of appSigFunM. appSigFunM' :: (HTraversable g, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function composes two monadic term algebras. compHomM :: (HTraversable g, HFunctor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h -- | This function composes two monadic signature functions. compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h -- | This function composes a monadic term algebra with a monadic algebra compAlgM :: (HTraversable g, Monad m) => AlgM m g a -> HomM m f g -> AlgM m f a -- | This function composes a monadic term algebra with a monadic algebra. compAlgM' :: (HTraversable g, Monad m) => AlgM m g a -> Hom f g -> AlgM m f a type Coalg f a = a :-> f a -- | This function unfolds the given value to a term using the given -- unravelling function. This is the unique homomorphism a -> Term -- f from the given coalgebra of type a -> f a to the -- final coalgebra Term f. ana :: HFunctor f => Coalg f a -> a :-> Term f type CoalgM m f a = NatM m a (f a) -- | This function unfolds the given value to a term using the given -- monadic unravelling function. This is the unique homomorphism a -- -> Term f from the given coalgebra of type a -> f -- a to the final coalgebra Term f. anaM :: (HTraversable f, Monad m) => CoalgM m f a -> NatM m a (Term f) -- | This type represents r-algebras over functor f and with -- domain a. type RAlg f a = f (Term f :*: a) :-> a -- | This function constructs a paramorphism from the given r-algebra para :: HFunctor f => RAlg f a -> Term f :-> a -- | This type represents monadic r-algebras over monad m and -- functor f and with domain a. type RAlgM m f a = NatM m (f (Term f :*: a)) a -- | This function constructs a monadic paramorphism from the given monadic -- r-algebra paraM :: (HTraversable f, Monad m) => RAlgM m f a -> NatM m (Term f) a -- | This type represents r-coalgebras over functor f and with -- domain a. type RCoalg f a = a :-> f (Term f :+: a) -- | This function constructs an apomorphism from the given r-coalgebra. apo :: HFunctor f => RCoalg f a -> a :-> Term f -- | This type represents monadic r-coalgebras over monad m and -- functor f with domain a. type RCoalgM m f a = NatM m a (f (Term f :+: a)) -- | This function constructs a monadic apomorphism from the given monadic -- r-coalgebra. apoM :: (HTraversable f, Monad m) => RCoalgM m f a -> NatM m a (Term f) -- | This type represents cv-coalgebras over functor f and with -- domain a. type CVCoalg f a = a :-> f (Context f a) -- | This function constructs the unique futumorphism from the given -- cv-coalgebra to the term algebra. futu :: HFunctor f => CVCoalg f a -> a :-> Term f -- | This type represents monadic cv-coalgebras over monad m and -- functor f, and with domain a. type CVCoalgM m f a = NatM m a (f (Context f a)) -- | This function constructs the unique monadic futumorphism from the -- given monadic cv-coalgebra to the term algebra. futuM :: (HTraversable f, Monad m) => CVCoalgM m f a -> NatM m a (Term f) -- | This module provides operators on higher-order functors. All -- definitions are generalised versions of those in Data.Comp.Ops. module Data.Comp.Multi.Ops -- | Data type defining coproducts. data (:+:) f g (h :: * -> *) e Inl :: (f h e) -> (:+:) f g e Inr :: (g h e) -> (:+:) f g e -- | Utility function to case on a higher-order functor sum, without -- exposing the internal representation of sums. caseH :: (f a b -> c) -> (g a b -> c) -> (f :+: g) a b -> c class Subsume (e :: Emb) (f :: (* -> *) -> * -> *) (g :: (* -> *) -> * -> *) inj' :: Subsume e f g => Proxy e -> f a :-> g a prj' :: Subsume e f g => Proxy e -> NatM Maybe (g a) (f a) -- | A constraint f :<: g expresses that the signature -- f is subsumed by g, i.e. f can be used to -- construct elements in g. type (:<:) f g = Subsume (ComprEmb (Elem f g)) f g inj :: f :<: g => f a :-> g a proj :: f :<: g => NatM Maybe (g a) (f a) type (:=:) f g = (f :<: g, g :<: f) spl :: f :=: (f1 :+: f2) => (f1 a :-> b) -> (f2 a :-> b) -> f a :-> b -- | This data type adds a constant product to a signature. Alternatively, -- this could have also been defined as -- --
-- data (f :&: a) (g :: * -> *) e = f g e :&: a e ---- -- This is too general, however, for example for productHHom. data (:&:) f a (g :: * -> *) e (:&:) :: f g e -> a -> (:&:) f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn (s :: (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a :-> s' a projectA :: DistAnn s p s' => s' a :-> (s a :&: p) class RemA (s :: (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a :-> s' a -- | Formal product of signatures (functors). data (:*:) f g a (:*:) :: f a -> g a -> (:*:) f g a ffst :: (f :*: g) a -> f a fsnd :: (f :*: g) a -> g a instance DistAnn s p s' => DistAnn (f :+: s) p ((f :&: p) :+: s') instance DistAnn f p (f :&: p) instance RemA (f :&: p) f instance RemA s s' => RemA ((f :&: p) :+: s) (f :+: s') instance HTraversable f => HTraversable (f :&: a) instance HFoldable f => HFoldable (f :&: a) instance HFunctor f => HFunctor (f :&: a) instance (Subsume ('Found p1) f1 g, Subsume ('Found p2) f2 g) => Subsume ('Found ('Sum p1 p2)) (f1 :+: f2) g instance Subsume ('Found p) f g => Subsume ('Found ('Ri p)) f (g' :+: g) instance Subsume ('Found p) f g => Subsume ('Found ('Le p)) f (g :+: g') instance Subsume ('Found 'Here) f f instance (HTraversable f, HTraversable g) => HTraversable (f :+: g) instance (HFoldable f, HFoldable g) => HFoldable (f :+: g) instance (HFunctor f, HFunctor g) => HFunctor (f :+: g) -- | This module defines sums on signatures. All definitions are -- generalised versions of those in Data.Comp.Sum. module Data.Comp.Multi.Sum -- | A constraint f :<: g expresses that the signature -- f is subsumed by g, i.e. f can be used to -- construct elements in g. type (:<:) f g = Subsume (ComprEmb (Elem f g)) f g -- | Data type defining coproducts. data (:+:) f g (h :: * -> *) e -- | Utility function to case on a higher-order functor sum, without -- exposing the internal representation of sums. caseH :: (f a b -> c) -> (g a b -> c) -> (f :+: g) a b -> c proj :: f :<: g => NatM Maybe (g a) (f a) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: g :<: f => NatM Maybe (Cxt h f a) (g (Cxt h f a)) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (HTraversable g, g :<: f) => CxtFunM Maybe f g inj :: f :<: g => f a :-> g a -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: g :<: f => g (Cxt h f a) :-> Cxt h f a -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (HFunctor g, g :<: f) => CxtFun g f split :: f :=: (f1 :+: f2) => (f1 (Term f) :-> a) -> (f2 (Term f) :-> a) -> Term f :-> a injectConst :: (HFunctor g, g :<: f) => Const g :-> Cxt h f a projectConst :: (HFunctor g, g :<: f) => NatM Maybe (Cxt h f a) (Const g) -- | This function injects a whole context into another context. injectCxt :: (HFunctor g, g :<: f) => Cxt h' g (Cxt h f a) :-> Cxt h f a -- | This function lifts the given functor to a context. liftCxt :: (HFunctor f, g :<: f) => g a :-> Context f a -- | This function applies the given context with hole type a to a -- family f of contexts (possibly terms) indexed by a. -- That is, each hole h is replaced by the context f h. substHoles :: (HFunctor f, HFunctor g, f :<: g) => (v :-> Cxt h g a) -> Cxt h' f v :-> Cxt h g a -- | This module defines type generic functions and recursive schemes along -- the lines of the Uniplate library. All definitions are generalised -- versions of those in Data.Comp.Generic. module Data.Comp.Multi.Generic -- | This function returns a list of all subterms of the given term. This -- function is similar to Uniplate's universe function. subterms :: HFoldable f => Term f :=> [E (Term f)] -- | This function returns a list of all subterms of the given term that -- are constructed from a particular functor. subterms' :: (HFoldable f, g :<: f) => Term f :=> [E (g (Term f))] -- | This function transforms every subterm according to the given function -- in a bottom-up manner. This function is similar to Uniplate's -- transform function. transform :: HFunctor f => (Term f :-> Term f) -> Term f :-> Term f -- | Monadic version of transform. transformM :: (HTraversable f, Monad m) => NatM m (Term f) (Term f) -> NatM m (Term f) (Term f) query :: HFoldable f => (Term f :=> r) -> (r -> r -> r) -> Term f :=> r subs :: HFoldable f => Term f :=> [E (Term f)] subs' :: (HFoldable f, g :<: f) => Term f :=> [E (g (Term f))] -- | This function computes the generic size of the given term, i.e. the -- its number of subterm occurrences. size :: HFoldable f => Cxt h f a :=> Int -- | This function computes the generic depth of the given term. depth :: HFoldable f => Cxt h f a :=> Int -- | This module defines annotations on signatures. All definitions are -- generalised versions of those in Data.Comp.Annotation. module Data.Comp.Multi.Annotation -- | This data type adds a constant product to a signature. Alternatively, -- this could have also been defined as -- --
-- data (f :&: a) (g :: * -> *) e = f g e :&: a e ---- -- This is too general, however, for example for productHHom. data (:&:) f a (g :: * -> *) e (:&:) :: f g e -> a -> (:&:) f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn (s :: (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a :-> s' a projectA :: DistAnn s p s' => s' a :-> (s a :&: p) class RemA (s :: (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a :-> s' a -- | This function transforms a function with a domain constructed from a -- functor to a function with a domain constructed with the same functor -- but with an additional annotation. liftA :: RemA s s' => (s' a :-> t) -> s a :-> t -- | This function annotates each sub term of the given term with the given -- value (of type a). ann :: (DistAnn f p g, HFunctor f) => p -> CxtFun f g -- | This function transforms a function with a domain constructed from a -- functor to a function with a domain constructed with the same functor -- but with an additional annotation. liftA' :: (DistAnn s' p s, HFunctor s') => (s' a :-> Cxt h s' a) -> s a :-> Cxt h s a -- | This function strips the annotations from a term over a functor with -- annotations. stripA :: (RemA g f, HFunctor g) => CxtFun g f propAnn :: (DistAnn f p f', DistAnn g p g', HFunctor g) => Hom f g -> Hom f' g' -- | This function is similar to project but applies to signatures -- with an annotation which is then ignored. project' :: (RemA f f', s :<: f') => Cxt h f a i -> Maybe (s (Cxt h f a) i) -- | This module defines equality for (higher-order) signatures, which -- lifts to equality for (higher-order) terms and contexts. All -- definitions are generalised versions of those in -- Data.Comp.Equality. module Data.Comp.Multi.Equality -- | Signature equality. An instance EqHF f gives rise to an -- instance KEq (HTerm f). class EqHF f eqHF :: (EqHF f, KEq g) => f g i -> f g j -> Bool class KEq f keq :: KEq f => f i -> f j -> Bool -- | This function implements equality of values of type f a -- modulo the equality of a itself. If two functorial values are -- equal in this sense, eqMod returns a Just value -- containing a list of pairs consisting of corresponding components of -- the two functorial values. heqMod :: (EqHF f, HFunctor f, HFoldable f) => f a i -> f b i -> Maybe [(E a, E b)] instance (EqHF f, KEq a) => Eq (Cxt h f a i) instance (EqHF f, KEq a) => KEq (Cxt h f a) instance EqHF f => EqHF (Cxt h f) instance (EqHF f, EqHF g) => EqHF (f :+: g) instance KEq a => Eq (E a) instance Eq a => KEq (K a) -- | This module defines the infrastructure necessary to use Generalised -- Compositional Data Types. Generalised Compositional Data Types is -- an extension of Compositional Data Types with mutually recursive data -- types, and more generally GADTs. Examples of usage are bundled with -- the package in the library examples/Examples/Multi. module Data.Comp.Multi -- | This modules defines the Desugar type class for desugaring of -- terms. module Data.Comp.Multi.Desugar -- | The desugaring term homomorphism. class (HFunctor f, HFunctor g) => Desugar f g where desugHom = desugHom' . hfmap Hole desugHom' x = appCxt (desugHom x) desugHom :: Desugar f g => Hom f g desugHom' :: Desugar f g => Alg f (Context g a) -- | Desugar a term. desugar :: Desugar f g => Term f :-> Term g -- | Lift desugaring to annotated terms. desugarA :: (HFunctor f', HFunctor g', DistAnn f p f', DistAnn g p g', Desugar f g) => Term f' :-> Term g' -- | Default desugaring instance. instance [overlap ok] (HFunctor f, HFunctor g, f :<: g) => Desugar f g instance [overlap ok] (Desugar f h, Desugar g h) => Desugar (f :+: g) h -- | This module defines ordering of signatures, which lifts to ordering of -- terms and contexts. module Data.Comp.Multi.Ordering class KEq f => KOrd f kcompare :: KOrd f => f i -> f j -> Ordering -- | Signature ordering. An instance OrdHF f gives rise to an -- instance Ord (Term f). class EqHF f => OrdHF f compareHF :: (OrdHF f, KOrd a) => f a i -> f a j -> Ordering instance (HFunctor f, OrdHF f, KOrd a) => Ord (Cxt h f a i) instance (HFunctor f, OrdHF f, KOrd a) => KOrd (Cxt h f a) instance (HFunctor f, OrdHF f) => OrdHF (Cxt h f) instance (OrdHF f, OrdHF g) => OrdHF (f :+: g) instance Ord a => KOrd (K a) instance KOrd f => Ord (E f) -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- HFunctor, HFoldable, and HTraversable. module Data.Comp.Multi.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature printing. An instance ShowHF f gives rise to an -- instance KShow (HTerm f). class ShowHF f where showHF = K . showHF' showHF' = unK . showHF showHF :: ShowHF f => Alg f (K String) showHF' :: ShowHF f => f (K String) :=> String class KShow a kshow :: KShow a => a i -> K String i -- | Derive an instance of ShowHF for a type constructor of any -- higher-order kind taking at least two arguments. makeShowHF :: Name -> Q [Dec] -- | Signature equality. An instance EqHF f gives rise to an -- instance KEq (HTerm f). class EqHF f eqHF :: (EqHF f, KEq g) => f g i -> f g j -> Bool class KEq f keq :: KEq f => f i -> f j -> Bool -- | Derive an instance of EqHF for a type constructor of any -- higher-order kind taking at least two arguments. makeEqHF :: Name -> Q [Dec] -- | Signature ordering. An instance OrdHF f gives rise to an -- instance Ord (Term f). class EqHF f => OrdHF f compareHF :: (OrdHF f, KOrd a) => f a i -> f a j -> Ordering -- | Derive an instance of OrdHF for a type constructor of any -- parametric kind taking at least three arguments. makeOrdHF :: Name -> Q [Dec] -- | This class represents higher-order functors (Johann, Ghani, POPL '08) -- which are endofunctors on the category of endofunctors. class HFunctor h -- | Derive an instance of HFunctor for a type constructor of any -- higher-order kind taking at least two arguments. makeHFunctor :: Name -> Q [Dec] -- | Higher-order functors that can be folded. -- -- Minimal complete definition: hfoldMap or hfoldr. class HFunctor h => HFoldable h where hfold = hfoldMap unK hfoldMap f = hfoldr (mappend . f) mempty hfoldr f z t = appEndo (hfoldMap (Endo . f) t) z hfoldl f z t = appEndo (getDual (hfoldMap (Dual . Endo . flip f) t)) z hfoldr1 f xs = fromMaybe (error "hfoldr1: empty structure") (hfoldr mf Nothing xs) where mf :: K a :=> (Maybe a -> Maybe a) mf (K x) Nothing = Just x mf (K x) (Just y) = Just (f x y) hfoldl1 f xs = fromMaybe (error "hfoldl1: empty structure") (hfoldl mf Nothing xs) where mf :: Maybe a -> K a :=> Maybe a mf Nothing (K y) = Just y mf (Just x) (K y) = Just (f x y) -- | Derive an instance of HFoldable for a type constructor of any -- higher-order kind taking at least two arguments. makeHFoldable :: Name -> Q [Dec] class HFoldable t => HTraversable t -- | Derive an instance of HTraversable for a type constructor of -- any higher-order kind taking at least two arguments. makeHTraversable :: Name -> Q [Dec] -- | Derive smart constructors for a type constructor of any higher-order -- kind taking at least two arguments. The smart constructors are similar -- to the ordinary constructors, but an inject is automatically -- inserted. smartConstructors :: Name -> Q [Dec] -- | Derive smart constructors with products for a type constructor of any -- parametric kind taking at least two arguments. The smart constructors -- are similar to the ordinary constructors, but an injectA is -- automatically inserted. smartAConstructors :: Name -> Q [Dec] -- | Given the name of a type class, where the first parameter is a -- higher-order functor, lift it to sums of higher-order. Example: -- class HShowF f where ... is lifted as instance (HShowF f, -- HShowF g) => HShowF (f :+: g) where ... . liftSum :: Name -> Q [Dec] -- | This module defines showing of (higher-order) signatures, which lifts -- to showing of (higher-order) terms and contexts. All definitions are -- generalised versions of those in Data.Comp.Show. module Data.Comp.Multi.Show -- | Signature printing. An instance ShowHF f gives rise to an -- instance KShow (HTerm f). class ShowHF f where showHF = K . showHF' showHF' = unK . showHF showHF :: ShowHF f => Alg f (K String) showHF' :: ShowHF f => f (K String) :=> String instance (ShowHF f, ShowHF g) => ShowHF (f :+: g) instance (ShowHF f, Show p) => ShowHF (f :&: p) instance KShow (Cxt h f a) => Show (Cxt h f a i) instance (ShowHF f, HFunctor f, KShow a) => KShow (Cxt h f a) instance (ShowHF f, HFunctor f) => ShowHF (Cxt h f) instance KShow (K ()) instance KShow (K String) -- | This module defines an abstract notion of (bound) variables in -- compositional data types, and scoped substitution. Capture-avoidance -- is not taken into account. All definitions are generalised -- versions of those in Data.Comp.Variables. module Data.Comp.Multi.Variables -- | This multiparameter class defines functors with variables. An instance -- HasVar f v denotes that values over f might contain -- and bind variables of type v. class HasVars (f :: (* -> *) -> * -> *) v where isVar _ = Nothing bindsVars _ = empty isVar :: HasVars f v => f a :=> Maybe v bindsVars :: (HasVars f v, Mapping m a) => f a :=> m (Set v) type GSubst v a = Map v (A a) type CxtSubst h a f v = GSubst v (Cxt h f a) type Subst f v = CxtSubst NoHole (K ()) f v varsToHoles :: (HTraversable f, HasVars f v, Ord v) => Term f :-> Context f (K v) -- | This function checks whether a variable is contained in a context. containsVar :: (Ord v, HasVars f v, HTraversable f, HFunctor f) => v -> Cxt h f a :=> Bool -- | This function computes the set of variables occurring in a context. variables :: (Ord v, HasVars f v, HTraversable f, HFunctor f) => Cxt h f a :=> Set v -- | This function computes the list of variables occurring in a context. variableList :: (HasVars f v, HTraversable f, HFunctor f, Ord v) => Cxt h f a :=> [v] -- | This function computes the set of variables occurring in a context. variables' :: (Ord v, HasVars f v, HFoldable f, HFunctor f) => Const f :=> Set v appSubst :: (Ord v, SubstVars v t a) => GSubst v t -> a :-> a -- | This function composes two substitutions s1 and s2. -- That is, applying the resulting substitution is equivalent to first -- applying s2 and then s1. compSubst :: (Ord v, HasVars f v, HTraversable f) => CxtSubst h a f v -> CxtSubst h a f v -> CxtSubst h a f v -- | This combinator pairs every argument of a given constructor with the -- set of (newly) bound variables according to the corresponding -- HasVars type class instance. getBoundVars :: (HasVars f v, HTraversable f) => f a i -> f (a :*: K (Set v)) i -- | left-biased union of two mappings. (&) :: Mapping m k => m v -> m v -> m v -- | This operator constructs a singleton mapping. (|->) :: Mapping m k => k i -> v -> m v -- | This is the empty mapping. empty :: Mapping m k => m v instance [overlap ok] (SubstVars v t a, HFunctor f) => SubstVars v t (f a) instance [overlap ok] (Ord v, HasVars f v, HTraversable f) => SubstVars v (Cxt h f a) (Cxt h f a) instance [overlap ok] (HasVars f v0, HasVars g v0) => HasVars (f :+: g) v0 -- | This module provides a generic projection function pr for -- arbitrary nested binary products. module Data.Comp.Multi.Projection -- | This function projects the component of type e out or the -- compound value of type p. pr :: p :< q => q a -> p a -- | The constraint e :< p expresses that e is a -- component of the type p. That is, p is formed by -- binary products using the type e. The occurrence of -- e must be unique. For example we have Int :< -- (Bool,(Int,Bool)) but not Bool :< (Bool,(Int,Bool)). type (:<) f g = Proj (ComprEmb (Elem f g)) f g -- | Formal product of signatures (functors). data (:*:) f g a (:*:) :: f a -> g a -> (:*:) f g a ffst :: (f :*: g) a -> f a fsnd :: (f :*: g) a -> g a instance (Proj ('Found p1) f1 g, Proj ('Found p2) f2 g) => Proj ('Found ('Sum p1 p2)) (f1 :*: f2) g instance Proj ('Found p) f g => Proj ('Found ('Ri p)) f (g' :*: g) instance Proj ('Found p) f g => Proj ('Found ('Le p)) f (g :*: g') instance Proj ('Found 'Here) f f -- | This module defines the central notion of terms and its -- generalisation to contexts. module Data.Comp.Term -- | This data type represents contexts over a signature. Contexts are -- terms containing zero or more holes. The first type parameter is -- supposed to be one of the phantom types Hole and NoHole. -- The second parameter is the signature of the context. The third -- parameter is the type of the holes. data Cxt :: * -> (* -> *) -> * -> * Term :: f (Cxt h f a) -> Cxt h f a Hole :: a -> Cxt Hole f a -- | Phantom type that signals that a Cxt might contain holes. data Hole -- | Phantom type that signals that a Cxt does not contain holes. data NoHole type Context = Cxt Hole -- | A term is a context with no holes. type Term f = Cxt NoHole f () -- | Polymorphic definition of a term. This formulation is more natural -- than Term, it leads to impredicative types in some cases, -- though. type PTerm f = forall h a. Cxt h f a type Const f = f () -- | This function unravels the given term at the topmost layer. unTerm :: Cxt NoHole f a -> f (Cxt NoHole f a) -- | Convert a functorial value into a context. simpCxt :: Functor f => f a -> Context f a -- | Cast a term over a signature to a context over the same signature. toCxt :: Functor f => Term f -> Cxt h f a -- | This function converts a constant to a term. This assumes that the -- argument is indeed a constant, i.e. does not have a value for the -- argument type of the functor f. constTerm :: Functor f => Const f -> Term f instance Traversable f => Traversable (Cxt h f) instance Foldable f => Foldable (Cxt h f) instance Functor f => Monad (Context f) instance Functor f => Applicative (Context f) instance Functor f => Functor (Cxt h f) -- | This module defines equality for signatures, which lifts to equality -- for terms and contexts. module Data.Comp.Equality -- | Signature equality. An instance EqF f gives rise to an -- instance Eq (Term f). class EqF f eqF :: (EqF f, Eq a) => f a -> f a -> Bool -- | This function implements equality of values of type f a -- modulo the equality of a itself. If two functorial values are -- equal in this sense, eqMod returns a Just value -- containing a list of pairs consisting of corresponding components of -- the two functorial values. eqMod :: (EqF f, Functor f, Foldable f) => f a -> f b -> Maybe [(a, b)] instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0, Eq g0, Eq h0, Eq i0) => EqF ((,,,,,,,,,) a0 b0 c0 d0 e0 f0 g0 h0 i0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0, Eq g0, Eq h0) => EqF ((,,,,,,,,) a0 b0 c0 d0 e0 f0 g0 h0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0, Eq g0) => EqF ((,,,,,,,) a0 b0 c0 d0 e0 f0 g0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0) => EqF ((,,,,,,) a0 b0 c0 d0 e0 f0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0) => EqF ((,,,,,) a0 b0 c0 d0 e0) instance (Eq a0, Eq b0, Eq c0, Eq d0) => EqF ((,,,,) a0 b0 c0 d0) instance (Eq a0, Eq b0, Eq c0) => EqF ((,,,) a0 b0 c0) instance (Eq a0, Eq b0) => EqF ((,,) a0 b0) instance Eq a0 => EqF ((,) a0) instance EqF [] instance EqF Maybe instance (EqF f, EqF g) => EqF (f :+: g) instance EqF f => EqF (Cxt h f) instance (EqF f, Eq a) => Eq (Cxt h f a) -- | This module defines the notion of algebras and catamorphisms, and -- their generalizations to e.g. monadic versions and other (co)recursion -- schemes. module Data.Comp.Algebra -- | This type represents an algebra over a functor f and carrier -- a. type Alg f a = f a -> a -- | Construct a catamorphism for contexts over f with holes of -- type a, from the given algebra. free :: Functor f => Alg f b -> (a -> b) -> Cxt h f a -> b -- | Construct a catamorphism from the given algebra. cata :: Functor f => Alg f a -> Term f -> a -- | A generalisation of cata from terms over f to contexts -- over f, where the holes have the type of the algebra carrier. cata' :: Functor f => Alg f a -> Cxt h f a -> a -- | This function applies a whole context into another context. appCxt :: Functor f => Context f (Cxt h f a) -> Cxt h f a -- | This type represents a monadic algebra. It is similar to Alg -- but the return type is monadic. type AlgM m f a = f a -> m a -- | Convert a monadic algebra into an ordinary algebra with a monadic -- carrier. algM :: (Traversable f, Monad m) => AlgM m f a -> Alg f (m a) -- | Construct a monadic catamorphism for contexts over f with -- holes of type a, from the given monadic algebra. freeM :: (Traversable f, Monad m) => AlgM m f b -> (a -> m b) -> Cxt h f a -> m b -- | Construct a monadic catamorphism from the given monadic algebra. cataM :: (Traversable f, Monad m) => AlgM m f a -> Term f -> m a -- | A generalisation of cataM from terms over f to -- contexts over f, where the holes have the type of the monadic -- algebra carrier. cataM' :: (Traversable f, Monad m) => AlgM m f a -> Cxt h f a -> m a -- | This type represents a context function. type CxtFun f g = forall a h. Cxt h f a -> Cxt h g a -- | This type represents a signature function. type SigFun f g = forall a. f a -> g a -- | This type represents a term homomorphism. type Hom f g = SigFun f (Context g) -- | This function applies the given term homomorphism to a term/context. appHom :: (Functor f, Functor g) => Hom f g -> CxtFun f g -- | Apply a term homomorphism recursively to a term/context. This is a -- top-down variant of appHom. appHom' :: Functor g => Hom f g -> CxtFun f g -- | Compose two term homomorphisms. compHom :: (Functor g, Functor h) => Hom g h -> Hom f g -> Hom f h -- | This function applies a signature function to the given context. appSigFun :: Functor f => SigFun f g -> CxtFun f g -- | This function applies a signature function to the given context. This -- is a top-down variant of appSigFun. appSigFun' :: Functor g => SigFun f g -> CxtFun f g -- | This function composes two signature functions. compSigFun :: SigFun g h -> SigFun f g -> SigFun f h -- | This function composes a signature function with a term homomorphism. compSigFunHom :: Functor g => SigFun g h -> Hom f g -> Hom f h -- | This function composes a term homomorphism with a signature function. compHomSigFun :: Hom g h -> SigFun f g -> Hom f h -- | This function composes an algebra with a signature function. compAlgSigFun :: Alg g a -> SigFun f g -> Alg f a -- | Lifts the given signature function to the canonical term homomorphism. hom :: Functor g => SigFun f g -> Hom f g -- | Compose an algebra with a term homomorphism to get a new algebra. compAlg :: Functor g => Alg g a -> Hom f g -> Alg f a -- | Compose a term homomorphism with a coalgebra to get a cv-coalgebra. compCoalg :: Hom f g -> Coalg f a -> CVCoalg' g a -- | Compose a term homomorphism with a cv-coalgebra to get a new -- cv-coalgebra. compCVCoalg :: (Functor f, Functor g) => Hom f g -> CVCoalg' f a -> CVCoalg' g a -- | This type represents a monadic context function. type CxtFunM m f g = forall a h. Cxt h f a -> m (Cxt h g a) -- | This type represents a monadic signature function. type SigFunM m f g = forall a. f a -> m (g a) -- | This type represents a monadic term homomorphism. type HomM m f g = SigFunM m f (Context g) -- | This type represents a monadic signature function. It is similar to -- SigFunM but has monadic values also in the domain. type SigFunMD m f g = forall a. f (m a) -> m (g a) -- | This type represents a monadic term homomorphism. It is similar to -- HomM but has monadic values also in the domain. type HomMD m f g = SigFunMD m f (Context g) -- | Lift the given signature function to a monadic signature function. -- Note that term homomorphisms are instances of signature functions. -- Hence this function also applies to term homomorphisms. sigFunM :: Monad m => SigFun f g -> SigFunM m f g -- | Lift the give monadic signature function to a monadic term -- homomorphism. hom' :: (Functor f, Functor g, Monad m) => SigFunM m f g -> HomM m f g -- | Apply a monadic term homomorphism recursively to a term/context. appHomM :: (Traversable f, Functor g, Monad m) => HomM m f g -> CxtFunM m f g -- | Apply a monadic term homomorphism recursively to a term/context. This -- a top-down variant of appHomM. appHomM' :: (Traversable g, Monad m) => HomM m f g -> CxtFunM m f g -- | Lift the given signature function to a monadic term homomorphism. homM :: (Functor g, Monad m) => SigFunM m f g -> HomM m f g -- | This function constructs the unique monadic homomorphism from the -- initial term algebra to the given term algebra. homMD :: (Traversable f, Functor g, Monad m) => HomMD m f g -> CxtFunM m f g -- | This function applies a monadic signature function to the given -- context. appSigFunM :: (Traversable f, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies a monadic signature function to the given -- context. This is a top-down variant of appSigFunM. appSigFunM' :: (Traversable g, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies a signature function to the given context. appSigFunMD :: (Traversable f, Functor g, Monad m) => SigFunMD m f g -> CxtFunM m f g -- | Compose two monadic term homomorphisms. compHomM :: (Traversable g, Functor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h -- | This function composes two monadic signature functions. compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h compSigFunHomM :: (Traversable g, Functor h, Monad m) => SigFunM m g h -> HomM m f g -> HomM m f h -- | This function composes two monadic signature functions. compHomSigFunM :: Monad m => HomM m g h -> SigFunM m f g -> HomM m f h -- | This function composes two monadic signature functions. compAlgSigFunM :: Monad m => AlgM m g a -> SigFunM m f g -> AlgM m f a -- | Compose a monadic algebra with a monadic term homomorphism to get a -- new monadic algebra. compAlgM :: (Traversable g, Monad m) => AlgM m g a -> HomM m f g -> AlgM m f a -- | Compose a monadic algebra with a term homomorphism to get a new -- monadic algebra. compAlgM' :: (Traversable g, Monad m) => AlgM m g a -> Hom f g -> AlgM m f a -- | This type represents a coalgebra over a functor f and carrier -- a. type Coalg f a = a -> f a -- | Construct an anamorphism from the given coalgebra. ana :: Functor f => Coalg f a -> a -> Term f -- | Shortcut fusion variant of ana. ana' :: Functor f => Coalg f a -> a -> Term f -- | This type represents a monadic coalgebra over a functor f and -- carrier a. type CoalgM m f a = a -> m (f a) -- | Construct a monadic anamorphism from the given monadic coalgebra. anaM :: (Traversable f, Monad m) => CoalgM m f a -> a -> m (Term f) -- | This type represents an r-algebra over a functor f and -- carrier a. type RAlg f a = f (Term f, a) -> a -- | Construct a paramorphism from the given r-algebra. para :: Functor f => RAlg f a -> Term f -> a -- | This type represents a monadic r-algebra over a functor f and -- carrier a. type RAlgM m f a = f (Term f, a) -> m a -- | Construct a monadic paramorphism from the given monadic r-algebra. paraM :: (Traversable f, Monad m) => RAlgM m f a -> Term f -> m a -- | This type represents an r-coalgebra over a functor f and -- carrier a. type RCoalg f a = a -> f (Either (Term f) a) -- | Construct an apomorphism from the given r-coalgebra. apo :: Functor f => RCoalg f a -> a -> Term f -- | This type represents a monadic r-coalgebra over a functor f -- and carrier a. type RCoalgM m f a = a -> m (f (Either (Term f) a)) -- | Construct a monadic apomorphism from the given monadic r-coalgebra. apoM :: (Traversable f, Monad m) => RCoalgM m f a -> a -> m (Term f) -- | This type represents a cv-algebra over a functor f and -- carrier a. type CVAlg f a f' = f (Term f') -> a -- | Construct a histomorphism from the given cv-algebra. histo :: (Functor f, DistAnn f a f') => CVAlg f a f' -> Term f -> a -- | This type represents a monadic cv-algebra over a functor f -- and carrier a. type CVAlgM m f a f' = f (Term f') -> m a -- | Construct a monadic histomorphism from the given monadic cv-algebra. histoM :: (Traversable f, Monad m, DistAnn f a f') => CVAlgM m f a f' -> Term f -> m a -- | This type represents a cv-coalgebra over a functor f and -- carrier a. type CVCoalg f a = a -> f (Context f a) -- | Construct a futumorphism from the given cv-coalgebra. futu :: Functor f => CVCoalg f a -> a -> Term f -- | This type represents a generalised cv-coalgebra over a functor -- f and carrier a. type CVCoalg' f a = a -> Context f a -- | Construct a futumorphism from the given generalised cv-coalgebra. futu' :: Functor f => CVCoalg' f a -> a -> Term f -- | This type represents a monadic cv-coalgebra over a functor f -- and carrier a. type CVCoalgM m f a = a -> m (f (Context f a)) -- | Construct a monadic futumorphism from the given monadic cv-coalgebra. futuM :: (Traversable f, Monad m) => CVCoalgM m f a -> a -> m (Term f) -- | This module defines annotations on signatures. module Data.Comp.Annotation -- | This data type adds a constant product (annotation) to a signature. data (:&:) f a e (:&:) :: f e -> a -> (:&:) f a e -- | Formal product of signatures (functors). data (:*:) f g a (:*:) :: f a -> g a -> (:*:) f g a -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a -> s' a projectA :: DistAnn s p s' => s' a -> (s a, p) class RemA s s' | s -> s' remA :: RemA s s' => s a -> s' a -- | Transform a function with a domain constructed from a functor to a -- function with a domain constructed with the same functor, but with an -- additional annotation. liftA :: RemA s s' => (s' a -> t) -> s a -> t -- | Transform a function with a domain constructed from a functor to a -- function with a domain constructed with the same functor, but with an -- additional annotation. liftA' :: (DistAnn s' p s, Functor s') => (s' a -> Cxt h s' a) -> s a -> Cxt h s a -- | Strip the annotations from a term over a functor with annotations. stripA :: (RemA g f, Functor g) => CxtFun g f -- | Lift a term homomorphism over signatures f and g to -- a term homomorphism over the same signatures, but extended with -- annotations. propAnn :: (DistAnn f p f', DistAnn g p g', Functor g) => Hom f g -> Hom f' g' -- | Lift a monadic term homomorphism over signatures f and -- g to a monadic term homomorphism over the same signatures, -- but extended with annotations. propAnnM :: (DistAnn f p f', DistAnn g p g', Functor g, Monad m) => HomM m f g -> HomM m f' g' -- | Annotate each node of a term with a constant value. ann :: (DistAnn f p g, Functor f) => p -> CxtFun f g -- | This function is similar to project but applies to signatures -- with an annotation which is then ignored. project' :: (RemA f f', s :<: f') => Cxt h f a -> Maybe (s (Cxt h f a)) -- | This module provides the infrastructure to extend signatures. module Data.Comp.Sum -- | A constraint f :<: g expresses that the signature -- f is subsumed by g, i.e. f can be used to -- construct elements in g. type (:<:) f g = Subsume (ComprEmb (Elem f g)) f g type (:=:) f g = (f :<: g, g :<: f) -- | Formal sum of signatures (functors). data (:+:) f g e -- | Utility function to case on a functor sum, without exposing the -- internal representation of sums. caseF :: (f a -> b) -> (g a -> b) -> (f :+: g) a -> b proj :: f :<: g => g a -> Maybe (f a) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: g :<: f => Cxt h f a -> Maybe (g (Cxt h f a)) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (Traversable g, g :<: f) => CxtFunM Maybe f g -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project_ :: SigFunM Maybe f g -> Cxt h f a -> Maybe (g (Cxt h f a)) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject_ :: Traversable g => (SigFunM Maybe f g) -> CxtFunM Maybe f g inj :: f :<: g => f a -> g a -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: g :<: f => g (Cxt h f a) -> Cxt h f a -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (Functor g, g :<: f) => CxtFun g f -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject_ :: SigFun g f -> g (Cxt h f a) -> Cxt h f a -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject_ :: Functor g => SigFun g f -> CxtFun g f split :: f :=: (f1 :+: f2) => (f1 (Term f) -> a) -> (f2 (Term f) -> a) -> Term f -> a injectConst :: (Functor g, g :<: f) => Const g -> Cxt h f a projectConst :: (Functor g, g :<: f) => Cxt h f a -> Maybe (Const g) -- | This function injects a whole context into another context. injectCxt :: (Functor g, g :<: f) => Cxt h' g (Cxt h f a) -> Cxt h f a -- | This function lifts the given functor to a context. liftCxt :: (Functor f, g :<: f) => g a -> Context f a -- | This function applies the given context with hole type a to a -- family f of contexts (possibly terms) indexed by a. -- That is, each hole h is replaced by the context f h. substHoles :: (Functor f, Functor g, f :<: g) => Cxt h' f v -> (v -> Cxt h g a) -> Cxt h g a substHoles' :: (Functor f, Functor g, f :<: g, Ord v) => Cxt h' f v -> Map v (Cxt h g a) -> Cxt h g a instance (Eq (f a), Eq (g a)) => Eq ((:+:) f g a) instance (Ord (f a), Ord (g a)) => Ord ((:+:) f g a) instance (Show (f a), Show (g a)) => Show ((:+:) f g a) -- | This module defines type generic functions and recursive schemes along -- the lines of the Uniplate library. module Data.Comp.Generic -- | This function returns the subterm of a given term at the position -- specified by the given path or Nothing if the input term has -- no such subterm getSubterm :: (Functor g, Foldable g) => [Int] -> Term g -> Maybe (Term g) -- | This function returns a list of all subterms of the given term. This -- function is similar to Uniplate's universe function. subterms :: Foldable f => Term f -> [Term f] -- | This function returns a list of all subterms of the given term that -- are constructed from a particular functor. subterms' :: (Foldable f, g :<: f) => Term f -> [g (Term f)] -- | This function transforms every subterm according to the given function -- in a bottom-up manner. This function is similar to Uniplate's -- transform function. transform :: Functor f => (Term f -> Term f) -> Term f -> Term f transform' :: Functor f => (Term f -> Maybe (Term f)) -> Term f -> Term f -- | Monadic version of transform. transformM :: (Traversable f, Monad m) => (Term f -> m (Term f)) -> Term f -> m (Term f) query :: Foldable f => (Term f -> r) -> (r -> r -> r) -> Term f -> r gsize :: Foldable f => Term f -> Int -- | This function computes the generic size of the given term, i.e. the -- its number of subterm occurrences. size :: Foldable f => Cxt h f a -> Int -- | This function computes the generic height of the given term. height :: Foldable f => Cxt h f a -> Int -- | This modules defines terms & contexts with thunks, with deferred -- monadic computations. module Data.Comp.Thunk -- | This type represents terms with thunks. type TermT m f = Term (m :+: f) -- | This type represents contexts with thunks. type CxtT m h f a = Cxt h (m :+: f) a -- | This function turns a monadic computation into a thunk. thunk :: m (CxtT m h f a) -> CxtT m h f a -- | This function evaluates all thunks until a non-thunk node is found. whnf :: Monad m => TermT m f -> m (f (TermT m f)) whnf' :: Monad m => TermT m f -> m (TermT m f) -- | This function first evaluates the argument term into whnf via -- whnf and then projects the top-level signature to the desired -- subsignature. Failure to do the projection is signalled as a failure -- in the monad. whnfPr :: (Monad m, g :<: f) => TermT m f -> m (g (TermT m f)) -- | This function evaluates all thunks. nf :: (Monad m, Traversable f) => TermT m f -> m (Term f) -- | This function evaluates all thunks while simultaneously projecting the -- term to a smaller signature. Failure to do the projection is signalled -- as a failure in the monad as in whnfPr. nfPr :: (Monad m, Traversable g, g :<: f) => TermT m f -> m (Term g) -- | This function inspects the topmost non-thunk node (using whnf) -- according to the given function. eval :: Monad m => (f (TermT m f) -> TermT m f) -> TermT m f -> TermT m f -- | This function inspects the topmost non-thunk nodes of two terms (using -- whnf) according to the given function. eval2 :: Monad m => (f (TermT m f) -> f (TermT m f) -> TermT m f) -> TermT m f -> TermT m f -> TermT m f -- | This function inspects a term (using nf) according to the given -- function. deepEval :: (Traversable f, Monad m) => (Term f -> TermT m f) -> TermT m f -> TermT m f -- | This function inspects two terms (using nf) according to the -- given function. deepEval2 :: (Monad m, Traversable f) => (Term f -> Term f -> TermT m f) -> TermT m f -> TermT m f -> TermT m f -- | Variant of eval with flipped argument positions (#>) :: Monad m => TermT m f -> (f (TermT m f) -> TermT m f) -> TermT m f -- | Variant of deepEval with flipped argument positions (#>>) :: (Monad m, Traversable f) => TermT m f -> (Term f -> TermT m f) -> TermT m f -- | This type represents algebras which have terms with thunks as carrier. type AlgT m f g = Alg f (TermT m g) -- | This combinator runs a catamorphism on a term with thunks. cataT :: (Traversable f, Monad m) => Alg f a -> TermT m f -> m a -- | This combinator runs a monadic catamorphism on a term with thunks cataTM :: (Traversable f, Monad m) => AlgM m f a -> TermT m f -> m a -- | This function decides equality of terms with thunks. eqT :: (EqF f, Foldable f, Functor f, Monad m) => TermT m f -> TermT m f -> m Bool -- | This combinator makes the evaluation of the given functor application -- strict by evaluating all thunks of immediate subterms. strict :: (f :<: g, Traversable f, Monad m) => f (TermT m g) -> TermT m g -- | This combinator is a variant of strict that only makes a subset -- of the arguments of a functor application strict. The first argument -- of this combinator specifies which positions are supposed to be -- strict. strictAt :: (f :<: g, Traversable f, Monad m) => Pos f -> f (TermT m g) -> TermT m g -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- Functor, Foldable, and Traversable. module Data.Comp.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature printing. An instance ShowF f gives rise to an -- instance Show (Term f). class ShowF f showF :: ShowF f => f String -> String -- | Derive an instance of ShowF for a type constructor of any -- first-order kind taking at least one argument. makeShowF :: Name -> Q [Dec] -- | Constructor printing. class ShowConstr f showConstr :: ShowConstr f => f a -> String -- | Derive an instance of showConstr for a type constructor of any -- first-order kind taking at least one argument. makeShowConstr :: Name -> Q [Dec] -- | Signature equality. An instance EqF f gives rise to an -- instance Eq (Term f). class EqF f eqF :: (EqF f, Eq a) => f a -> f a -> Bool -- | Derive an instance of EqF for a type constructor of any -- first-order kind taking at least one argument. makeEqF :: Name -> Q [Dec] -- | Signature ordering. An instance OrdF f gives rise to an -- instance Ord (Term f). class EqF f => OrdF f compareF :: (OrdF f, Ord a) => f a -> f a -> Ordering -- | Derive an instance of OrdF for a type constructor of any -- first-order kind taking at least one argument. makeOrdF :: Name -> Q [Dec] -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Maybe and IO -- satisfy these laws. class Functor (f :: * -> *) -- | Derive an instance of Functor for a type constructor of any -- first-order kind taking at least one argument. makeFunctor :: Name -> Q [Dec] -- | Data structures that can be folded. -- -- Minimal complete definition: foldMap or foldr. -- -- For example, given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l --class Foldable (t :: * -> *) -- | Derive an instance of Foldable for a type constructor of any -- first-order kind taking at least one argument. makeFoldable :: Name -> Q [Dec] -- | Functors representing data structures that can be traversed from left -- to right. -- -- Minimal complete definition: traverse or sequenceA. -- -- A definition of traverse must satisfy the following laws: -- --
-- t :: (Applicative f, Applicative g) => f a -> g a ---- -- preserving the Applicative operations, i.e. -- -- -- -- and the identity functor Identity and composition of functors -- Compose are defined as -- --
-- newtype Identity a = Identity a -- -- instance Functor Identity where -- fmap f (Identity x) = Identity (f x) -- -- instance Applicative Indentity where -- pure x = Identity x -- Identity f <*> Identity x = Identity (f x) -- -- newtype Compose f g a = Compose (f (g a)) -- -- instance (Functor f, Functor g) => Functor (Compose f g) where -- fmap f (Compose x) = Compose (fmap (fmap f) x) -- -- instance (Applicative f, Applicative g) => Applicative (Compose f g) where -- pure x = Compose (pure (pure x)) -- Compose f <*> Compose x = Compose ((<*>) <$> f <*> x) ---- -- (The naturality law is implied by parametricity.) -- -- Instances are similar to Functor, e.g. given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Traversable Tree where -- traverse f Empty = pure Empty -- traverse f (Leaf x) = Leaf <$> f x -- traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r ---- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- --