| Portability | non-portable (GHC Extensions) |
|---|---|
| Stability | experimental |
| Maintainer | Patrick Bahr <paba@diku.dk> |
Data.Comp
Contents
Description
This module defines the infrastructure necessary to use Compositional Data Types. Compositional Data Types is an extension of Wouter Swierstra's Functional Pearl: Data types a la carte. Examples of usage are provided below.
- module Data.Comp.Term
- module Data.Comp.Algebra
- module Data.Comp.Sum
- module Data.Comp.Product
- module Data.Comp.Equality
- module Data.Comp.Ordering
- module Data.Comp.Generic
Examples
Pure Computations
The example below illustrates how to use compositional data types to implement a small expression language, with a sub language of values, and an evaluation function mapping expressions to values.
The following language extensions are
needed in order to run the example: TemplateHaskell, TypeOperators,
MultiParamTypeClasses, FlexibleInstances, FlexibleContexts, and
UndecidableInstances.
import Data.Comp import Data.Comp.Show () import Data.Comp.Derive -- Signature for values and operators data Value e = Const Int | Pair e e data Op e = Add e e | Mult e e | Fst e | Snd e -- Signature for the simple expression language type Sig = Op :+: Value -- Derive boilerplate code using Template Haskell $(derive [instanceFunctor, instanceShowF, smartConstructors] [''Value, ''Op]) -- Term evaluation algebra class Eval f v where evalAlg :: Alg f (Term v) instance (Eval f v, Eval g v) => Eval (f :+: g) v where evalAlg (Inl x) = evalAlg x evalAlg (Inr x) = evalAlg x -- Lift the evaluation algebra to a catamorphism eval :: (Functor f, Eval f v) => Term f -> Term v eval = cata evalAlg instance (Value :<: v) => Eval Value v where evalAlg = inject instance (Value :<: v) => Eval Op v where evalAlg (Add x y) = iConst $ (projC x) + (projC y) evalAlg (Mult x y) = iConst $ (projC x) * (projC y) evalAlg (Fst x) = fst $ projP x evalAlg (Snd x) = snd $ projP x projC :: (Value :<: v) => Term v -> Int projC v = let Just (Const n) = project v in n projP :: (Value :<: v) => Term v -> (Term v, Term v) projP v = let Just (Pair x y) = project v in (x,y) -- Example: evalEx = iConst 5 evalEx :: Term Value evalEx = eval ((iConst 1) `iAdd` (iConst 2 `iMult` iConst 2) :: Term Sig)
Monadic Computations
The example below illustrates how to use compositional data types to implement a small expression language, with a sub language of values, and a monadic evaluation function mapping expressions to values.
The following language
extensions are needed in order to run the example: TemplateHaskell,
TypeOperators, MultiParamTypeClasses, FlexibleInstances,
FlexibleContexts, and UndecidableInstances.
import Data.Comp
import Data.Comp.Derive
import Control.Monad (liftM)
-- Signature for values and operators
data Value e = Const Int | Pair e e
data Op e = Add e e | Mult e e | Fst e | Snd e
-- Signature for the simple expression language
type Sig = Op :+: Value
-- Derive boilerplate code using Template Haskell
$(derive [instanceFunctor, instanceTraversable, instanceFoldable,
instanceEqF, instanceShowF, smartConstructors]
[''Value, ''Op])
-- Monadic term evaluation algebra
class EvalM f v where
evalAlgM :: AlgM Maybe f (Term v)
instance (EvalM f v, EvalM g v) => EvalM (f :+: g) v where
evalAlgM (Inl x) = evalAlgM x
evalAlgM (Inr x) = evalAlgM x
-- Lift the monadic evaluation algebra to a monadic catamorphism
evalM :: (Traversable f, EvalM f v) => Term f -> Maybe (Term v)
evalM = cataM evalAlgM
instance (Value :<: v) => EvalM Value v where
evalAlgM = return . inject
instance (Value :<: v) => EvalM Op v where
evalAlgM (Add x y) = do n1 <- projC x
n2 <- projC y
return $ iConst $ n1 + n2
evalAlgM (Mult x y) = do n1 <- projC x
n2 <- projC y
return $ iConst $ n1 * n2
evalAlgM (Fst v) = liftM fst $ projP v
evalAlgM (Snd v) = liftM snd $ projP v
projC :: (Value :<: v) => Term v -> Maybe Int
projC v = case project v of
Just (Const n) -> return n
_ -> Nothing
projP :: (Value :<: v) => Term v -> Maybe (Term v, Term v)
projP v = case project v of
Just (Pair x y) -> return (x,y)
_ -> Nothing
-- Example: evalMEx = Just (iConst 5)
evalMEx :: Maybe (Term Value)
evalMEx = evalM ((iConst 1) `iAdd` (iConst 2 `iMult` iConst 2) :: Term Sig)
Composing Term Homomorphisms and Algebras
The example below illustrates how to compose a term homomorphism and an algebra, exemplified via a desugaring term homomorphism and an evaluation algebra.
The following language extensions are needed in order to run the example:
TemplateHaskell, TypeOperators, MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, and UndecidableInstances.
import Data.Comp
import Data.Comp.Show ()
import Data.Comp.Derive
-- Signature for values, operators, and syntactic sugar
data Value e = Const Int | Pair e e
data Op e = Add e e | Mult e e | Fst e | Snd e
data Sugar e = Neg e | Swap e
-- Source position information (line number, column number)
data Pos = Pos Int Int
deriving Show
-- Signature for the simple expression language
type Sig = Op :+: Value
type SigP = Op :&: Pos :+: Value :&: Pos
-- Signature for the simple expression language, extended with syntactic sugar
type Sig' = Sugar :+: Op :+: Value
type SigP' = Sugar :&: Pos :+: Op :&: Pos :+: Value :&: Pos
-- Derive boilerplate code using Template Haskell
$(derive [instanceFunctor, instanceTraversable, instanceFoldable,
instanceEqF, instanceShowF, smartConstructors]
[''Value, ''Op, ''Sugar])
-- Term homomorphism for desugaring of terms
class (Functor f, Functor g) => Desugar f g where
desugHom :: TermHom f g
desugHom = desugHom' . fmap Hole
desugHom' :: Alg f (Context g a)
desugHom' x = appCxt (desugHom x)
instance (Desugar f h, Desugar g h) => Desugar (f :+: g) h where
desugHom (Inl x) = desugHom x
desugHom (Inr x) = desugHom x
desugHom' (Inl x) = desugHom' x
desugHom' (Inr x) = desugHom' x
instance (Value :<: v, Functor v) => Desugar Value v where
desugHom = simpCxt . inj
instance (Op :<: v, Functor v) => Desugar Op v where
desugHom = simpCxt . inj
instance (Op :<: v, Value :<: v, Functor v) => Desugar Sugar v where
desugHom' (Neg x) = iConst (-1) `iMult` x
desugHom' (Swap x) = iSnd x `iPair` iFst x
-- Term evaluation algebra
class Eval f v where
evalAlg :: Alg f (Term v)
instance (Eval f v, Eval g v) => Eval (f :+: g) v where
evalAlg (Inl x) = evalAlg x
evalAlg (Inr x) = evalAlg x
instance (Value :<: v) => Eval Value v where
evalAlg = inject
instance (Value :<: v) => Eval Op v where
evalAlg (Add x y) = iConst $ (projC x) + (projC y)
evalAlg (Mult x y) = iConst $ (projC x) * (projC y)
evalAlg (Fst x) = fst $ projP x
evalAlg (Snd x) = snd $ projP x
projC :: (Value :<: v) => Term v -> Int
projC v = let Just (Const n) = project v in n
projP :: (Value :<: v) => Term v -> (Term v, Term v)
projP v = let Just (Pair x y) = project v in (x,y)
-- Compose the evaluation algebra and the desugaring homomorphism to an
-- algebra
eval :: Term Sig' -> Term Value
eval = cata (evalAlg `compAlg` (desugHom :: TermHom Sig' Sig))
-- Example: evalEx = iPair (iConst 2) (iConst 1)
evalEx :: Term Value
evalEx = eval $ iSwap $ iPair (iConst 1) (iConst 2)
Lifting Term Homomorphisms to Products
The example below illustrates how to lift a term homomorphism to products, exemplified via a desugaring term homomorphism lifted to terms annotated with source position information.
The following language extensions are needed in order to run the example:
TemplateHaskell, TypeOperators, MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, and UndecidableInstances.
import Data.Comp
import Data.Comp.Show ()
import Data.Comp.Derive
-- Signature for values, operators, and syntactic sugar
data Value e = Const Int | Pair e e
data Op e = Add e e | Mult e e | Fst e | Snd e
data Sugar e = Neg e | Swap e
-- Source position information (line number, column number)
data Pos = Pos Int Int
deriving Show
-- Signature for the simple expression language
type Sig = Op :+: Value
type SigP = Op :&: Pos :+: Value :&: Pos
-- Signature for the simple expression language, extended with syntactic sugar
type Sig' = Sugar :+: Op :+: Value
type SigP' = Sugar :&: Pos :+: Op :&: Pos :+: Value :&: Pos
-- Derive boilerplate code using Template Haskell
$(derive [instanceFunctor, instanceTraversable, instanceFoldable,
instanceEqF, instanceShowF, smartConstructors]
[''Value, ''Op, ''Sugar])
-- Term homomorphism for desugaring of terms
class (Functor f, Functor g) => Desugar f g where
desugHom :: TermHom f g
desugHom = desugHom' . fmap Hole
desugHom' :: Alg f (Context g a)
desugHom' x = appCxt (desugHom x)
instance (Desugar f h, Desugar g h) => Desugar (f :+: g) h where
desugHom (Inl x) = desugHom x
desugHom (Inr x) = desugHom x
desugHom' (Inl x) = desugHom' x
desugHom' (Inr x) = desugHom' x
instance (Value :<: v, Functor v) => Desugar Value v where
desugHom = simpCxt . inj
instance (Op :<: v, Functor v) => Desugar Op v where
desugHom = simpCxt . inj
instance (Op :<: v, Value :<: v, Functor v) => Desugar Sugar v where
desugHom' (Neg x) = iConst (-1) `iMult` x
desugHom' (Swap x) = iSnd x `iPair` iFst x
-- Lift the desugaring term homomorphism to a catamorphism
desug :: Term Sig' -> Term Sig
desug = appTermHom desugHom
-- Example: desugEx = iPair (iConst 2) (iConst 1)
desugEx :: Term Sig
desugEx = desug $ iSwap $ iPair (iConst 1) (iConst 2)
-- Lift desugaring to terms annotated with source positions
desugP :: Term SigP' -> Term SigP
desugP = appTermHom (productTermHom desugHom)
iSwapP :: (DistProd f p f', Sugar :<: f) => p -> Term f' -> Term f'
iSwapP p x = Term (injectP p $ inj $ Swap x)
iConstP :: (DistProd f p f', Value :<: f) => p -> Int -> Term f'
iConstP p x = Term (injectP p $ inj $ Const x)
iPairP :: (DistProd f p f', Value :<: f) => p -> Term f' -> Term f' -> Term f'
iPairP p x y = Term (injectP p $ inj $ Pair x y)
iFstP :: (DistProd f p f', Op :<: f) => p -> Term f' -> Term f'
iFstP p x = Term (injectP p $ inj $ Fst x)
iSndP :: (DistProd f p f', Op :<: f) => p -> Term f' -> Term f'
iSndP p x = Term (injectP p $ inj $ Snd x)
-- Example: desugPEx = iPairP (Pos 1 0)
-- (iSndP (Pos 1 0) (iPairP (Pos 1 1)
-- (iConstP (Pos 1 2) 1)
-- (iConstP (Pos 1 3) 2)))
-- (iFstP (Pos 1 0) (iPairP (Pos 1 1)
-- (iConstP (Pos 1 2) 1)
-- (iConstP (Pos 1 3) 2)))
desugPEx :: Term SigP
desugPEx = desugP $ iSwapP (Pos 1 0) (iPairP (Pos 1 1) (iConstP (Pos 1 2) 1)
(iConstP (Pos 1 3) 2))
module Data.Comp.Term
module Data.Comp.Algebra
module Data.Comp.Sum
module Data.Comp.Product
module Data.Comp.Equality
module Data.Comp.Ordering
module Data.Comp.Generic