-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Compositional Data Types -- -- Based on Wouter Swierstra's Functional Pearl Data types à la -- carte (Journal of Functional Programming, 18(4):423-436, 2008), -- this package provides a framework for defining recursive data types in -- a compositional manner. The fundamental idea of compositional data -- types is to separate the signature of a data type from the fixed point -- construction that produces its recursive structure. By allowing to -- compose and decompose signatures, compositional data types -- enable to combine data types in a flexible way. The key point of -- Wouter Swierstra's original work is to define functions on -- compositional data types in a compositional manner as well by -- leveraging Haskell's type class machinery. -- -- Building on that foundation, this library provides additional -- extensions and (run-time) optimisations which make compositional data -- types usable for practical implementations. In particular, it provides -- an excellent framework for manipulating and analysing abstract syntax -- trees in a type-safe manner. Thus, it is perfectly suited for -- programming language implementations, especially, in an environment -- consisting of a family of tightly interwoven domain-specific -- languages. -- -- In concrete terms, this package provides the following features: -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature equality. An instance EqD f gives rise to an -- instance Eq (Term f). The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class EqD f eqD :: (EqD f, PEq a) => f Var a -> f Var a -> FreshM Bool -- | Derive an instance of EqD for a type constructor of any -- parametric kind taking at least two arguments. makeEqD :: Name -> Q [Dec] -- | Signature ordering. An instance OrdD f gives rise to an -- instance Ord (Term f). class EqD f => OrdD f compareD :: (OrdD f, POrd a) => f Var a -> f Var a -> FreshM Ordering -- | Derive an instance of OrdD for a type constructor of any -- parametric kind taking at least two arguments. makeOrdD :: Name -> Q [Dec] -- | Printing of parametric values. class PShow a pshow :: PShow a => a -> FreshM String -- | Signature printing. An instance ShowD f gives rise to an -- instance Show (Term f). class ShowD f showD :: (ShowD f, PShow a) => f Var a -> FreshM String -- | Derive an instance of ShowD for a type constructor of any -- parametric kind taking at least two arguments. makeShowD :: Name -> Q [Dec] -- | This class represents difunctors, i.e. binary type constructors that -- are contravariant in the first argument and covariant in the second -- argument. class Difunctor f -- | Derive an instance of Difunctor for a type constructor of any -- parametric kind taking at least two arguments. makeDifunctor :: Name -> Q [Dec] -- | Difunctors representing data structures that can be traversed from -- left to right. class (Difunctor f, Monad m) => Ditraversable f m a -- | Derive an instance of Traversable for a type constructor of -- any first-order kind taking at least one argument. makeDitraversable :: Name -> Q [Dec] -- | Derive smart constructors for a type constructor of any parametric -- kind taking at least two arguments. The smart constructors are similar -- to the ordinary constructors, but an inject is automatically -- inserted. smartConstructors :: Name -> Q [Dec] -- | Derive smart constructors with products for a type constructor of any -- parametric kind taking at least two arguments. The smart constructors -- are similar to the ordinary constructors, but an injectA is -- automatically inserted. smartAConstructors :: Name -> Q [Dec] -- | Given the name of a type class, where the first parameter is a -- difunctor, lift it to sums of difunctors. Example: class ShowD f -- where ... is lifted as instance (ShowD f, ShowD g) => -- ShowD (f :+: g) where ... . liftSum :: Name -> Q [Dec] -- | Utility function to case on a difunctor sum, without exposing the -- internal representation of sums. caseD :: (f a b -> c) -> (g a b -> c) -> (f :+: g) a b -> c -- | This module defines showing of signatures, which lifts to showing of -- terms. module Data.Comp.Param.Show -- | Printing of parametric values. class PShow a pshow :: PShow a => a -> FreshM String -- | Signature printing. An instance ShowD f gives rise to an -- instance Show (Term f). class ShowD f showD :: (ShowD f, PShow a) => f Var a -> FreshM String instance [incoherent] (ShowD f, PShow p) => ShowD (f :&: p) instance [incoherent] (Difunctor f, ShowD f) => Show (Term f) instance [incoherent] (ShowD f, PShow a) => PShow (Cxt h f Var a) instance [incoherent] ShowD f => ShowD (Cxt h f) instance [incoherent] (ShowD f, ShowD g) => ShowD (f :+: g) instance [incoherent] Show a => PShow a -- | This modules defines the Desugar type class for desugaring of -- terms. module Data.Comp.Param.Desugar -- | The desugaring term homomorphism. class (Difunctor f, Difunctor g) => Desugar f g desugHom :: Desugar f g => TermHom f g desugHom' :: Desugar f g => f a (Cxt h g a b) -> Cxt h g a b -- | Desugar a term. desugar :: Desugar f g => Term f -> Term g -- | Lift desugaring to annotated terms. desugarA :: (Difunctor f', Difunctor g', DistAnn f p f', DistAnn g p g', Desugar f g) => Term f' -> Term g' instance [overlap ok] (Difunctor f, Difunctor g, f :<: g) => Desugar f g instance [overlap ok] (Desugar f g[aZw0], Desugar g g[aZw0]) => Desugar (f :+: g) g[aZw0] -- | This module provides operators on functors. module Data.Comp.Ops -- | Formal sum of signatures (functors). data (:+:) f g e Inl :: (f e) -> :+: f g e Inr :: (g e) -> :+: f g e -- | Signature containment relation for automatic injections. The left-hand -- must be an atomic signature, where as the right-hand side must have a -- list-like structure. Examples include f :<: f :+: g and -- g :<: f :+: (g :+: h), non-examples include f :+: g -- :<: f :+: (g :+: h) and f :<: (f :+: g) :+: h. class :<: sub sup inj :: :<: sub sup => sub a -> sup a proj :: :<: sub sup => sup a -> Maybe (sub a) -- | Formal product of signatures (functors). data (:*:) f g a (:*:) :: f a -> g a -> :*: f g a ffst :: (f :*: g) a -> f a fsnd :: (f :*: g) a -> g a -- | This data type adds a constant product (annotation) to a signature. data (:&:) f a e (:&:) :: f e -> a -> :&: f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a -> s' a projectA :: DistAnn s p s' => s' a -> (s a, p) class RemA s s' | s -> s' remA :: RemA s s' => s a -> s' a instance [incoherent] DistAnn s p s' => DistAnn (f :+: s) p ((f :&: p) :+: s') instance [incoherent] DistAnn f p (f :&: p) instance [incoherent] RemA (f :&: p) f instance [incoherent] RemA s s' => RemA ((f :&: p) :+: s) (f :+: s') instance [incoherent] Traversable f => Traversable (f :&: a) instance [incoherent] Foldable f => Foldable (f :&: a) instance [incoherent] Functor f => Functor (f :&: a) instance [incoherent] f :<: g => f :<: (h :+: g) instance [incoherent] f :<: (f :+: g) instance [incoherent] f :<: f instance [incoherent] (Traversable f, Traversable g) => Traversable (f :+: g) instance [incoherent] (Foldable f, Foldable g) => Foldable (f :+: g) instance [incoherent] (Functor f, Functor g) => Functor (f :+: g) -- | This module defines the notion of algebras and catamorphisms, and -- their generalizations to e.g. monadic versions and other (co)recursion -- schemes. All definitions are generalised versions of those in -- Data.Comp.Algebra. module Data.Comp.Multi.Algebra -- | This type represents multisorted f-algebras with a family -- e of carriers. type Alg f e = f e :-> e -- | Construct a catamorphism for contexts over f with holes of -- type b, from the given algebra. free :: HFunctor f => Alg f b -> (a :-> b) -> Cxt h f a :-> b -- | Construct a catamorphism from the given algebra. cata :: HFunctor f => Alg f a -> Term f :-> a -- | A generalisation of cata from terms over f to contexts -- over f, where the holes have the type of the algebra carrier. cata' :: HFunctor f => Alg f e -> Cxt h f e :-> e -- | This function applies a whole context into another context. appCxt :: HFunctor f => Context f (Cxt h f a) :-> Cxt h f a -- | This type represents a monadic algebra. It is similar to Alg -- but the return type is monadic. type AlgM m f e = NatM m (f e) e -- | Construct a monadic catamorphism for contexts over f with -- holes of type b, from the given monadic algebra. freeM :: (HTraversable f, Monad m) => AlgM m f b -> NatM m a b -> NatM m (Cxt h f a) b -- | This is a monadic version of cata. cataM :: (HTraversable f, Monad m) => AlgM m f a -> NatM m (Term f) a cataM' :: (Monad m, HTraversable f) => AlgM m f a -> NatM m (Cxt h f a) a -- | This function lifts a many-sorted algebra to a monadic domain. liftMAlg :: (Monad m, HTraversable f) => Alg f I -> Alg f m -- | This type represents context function. type CxtFun f g = forall h. SigFun (Cxt h f) (Cxt h g) -- | This type represents uniform signature function specification. type SigFun f g = forall a. f a :-> g a -- | This type represents term homomorphisms. type TermHom f g = SigFun f (Context g) -- | This function applies the given term homomorphism to a term/context. appTermHom :: (HFunctor f, HFunctor g) => TermHom f g -> CxtFun f g -- | This function applies the given term homomorphism to a term/context. -- This is the top-down variant of appTermHom. appTermHom' :: HFunctor g => TermHom f g -> CxtFun f g -- | This function composes two term algebras. compTermHom :: (HFunctor g, HFunctor h) => TermHom g h -> TermHom f g -> TermHom f h -- | This function applies a signature function to the given context. appSigFun :: HFunctor f => SigFun f g -> CxtFun f g -- | This function applies a signature function to the given context. This -- is the top-down variant of appSigFun. appSigFun' :: HFunctor g => SigFun f g -> CxtFun f g -- | This function composes two signature functions. compSigFun :: SigFun g h -> SigFun f g -> SigFun f h -- | Lifts the given signature function to the canonical term homomorphism. termHom :: HFunctor g => SigFun f g -> TermHom f g -- | This function composes a term algebra with an algebra. compAlg :: HFunctor g => Alg g a -> TermHom f g -> Alg f a -- | This type represents monadic context function. type CxtFunM m f g = forall h. SigFunM m (Cxt h f) (Cxt h g) -- | This type represents monadic signature functions. type SigFunM m f g = forall a. NatM m (f a) (g a) -- | This type represents monadic term algebras. type TermHomM m f g = SigFunM m f (Context g) -- | This function lifts the given signature function to a monadic -- signature function. Note that term algebras are instances of signature -- functions. Hence this function also applies to term algebras. sigFunM :: Monad m => SigFun f g -> SigFunM m f g -- | This function lifts the give monadic signature function to a monadic -- term algebra. termHom' :: (HFunctor f, HFunctor g, Monad m) => SigFunM m f g -> TermHomM m f g -- | This function applies the given monadic term homomorphism to the given -- term/context. appTermHomM :: (HTraversable f, HFunctor g, Monad m) => TermHomM m f g -> CxtFunM m f g -- | This function applies the given monadic term homomorphism to the given -- term/context. This is a top-down variant of appTermHomM. appTermHomM' :: (HTraversable g, Monad m) => TermHomM m f g -> CxtFunM m f g -- | This function lifts the given signature function to a monadic term -- algebra. termHomM :: (HFunctor g, Monad m) => SigFun f g -> TermHomM m f g -- | This function applies the given monadic signature function to the -- given context. appSigFunM :: (HTraversable f, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies the given monadic signature function to the -- given context. This is a top-down variant of appSigFunM. appSigFunM' :: (HTraversable g, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function composes two monadic term algebras. compTermHomM :: (HTraversable g, HFunctor h, Monad m) => TermHomM m g h -> TermHomM m f g -> TermHomM m f h -- | This function composes two monadic signature functions. compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h -- | This function composes a monadic term algebra with a monadic algebra compAlgM :: (HTraversable g, Monad m) => AlgM m g a -> TermHomM m f g -> AlgM m f a -- | This function composes a monadic term algebra with a monadic algebra. compAlgM' :: (HTraversable g, Monad m) => AlgM m g a -> TermHom f g -> AlgM m f a type Coalg f a = a :-> f a -- | This function unfolds the given value to a term using the given -- unravelling function. This is the unique homomorphism a -> Term -- f from the given coalgebra of type a -> f a to the -- final coalgebra Term f. ana :: HFunctor f => Coalg f a -> a :-> Term f type CoalgM m f a = NatM m a (f a) -- | This function unfolds the given value to a term using the given -- monadic unravelling function. This is the unique homomorphism a -- -> Term f from the given coalgebra of type a -> f -- a to the final coalgebra Term f. anaM :: (HTraversable f, Monad m) => CoalgM m f a -> NatM m a (Term f) -- | This type represents r-algebras over functor f and with -- domain a. type RAlg f a = f (Term f :*: a) :-> a -- | This function constructs a paramorphism from the given r-algebra para :: HFunctor f => RAlg f a -> Term f :-> a -- | This type represents monadic r-algebras over monad m and -- functor f and with domain a. type RAlgM m f a = NatM m (f (Term f :*: a)) a -- | This function constructs a monadic paramorphism from the given monadic -- r-algebra paraM :: (HTraversable f, Monad m) => RAlgM m f a -> NatM m (Term f) a -- | This type represents r-coalgebras over functor f and with -- domain a. type RCoalg f a = a :-> f (Term f :+: a) -- | This function constructs an apomorphism from the given r-coalgebra. apo :: HFunctor f => RCoalg f a -> a :-> Term f -- | This type represents monadic r-coalgebras over monad m and -- functor f with domain a. type RCoalgM m f a = NatM m a (f (Term f :+: a)) -- | This function constructs a monadic apomorphism from the given monadic -- r-coalgebra. apoM :: (HTraversable f, Monad m) => RCoalgM m f a -> NatM m a (Term f) -- | This type represents cv-coalgebras over functor f and with -- domain a. type CVCoalg f a = a :-> f (Context f a) -- | This function constructs the unique futumorphism from the given -- cv-coalgebra to the term algebra. futu :: HFunctor f => CVCoalg f a -> a :-> Term f -- | This type represents monadic cv-coalgebras over monad m and -- functor f, and with domain a. type CVCoalgM m f a = NatM m a (f (Context f a)) -- | This function constructs the unique monadic futumorphism from the -- given monadic cv-coalgebra to the term algebra. futuM :: (HTraversable f, Monad m) => CVCoalgM m f a -> NatM m a (Term f) -- | This module provides operators on higher-order functors. All -- definitions are generalised versions of those in Data.Comp.Ops. module Data.Comp.Multi.Ops -- | Data type defining coproducts. data (:+:) f g h :: (* -> *) e Inl :: (f h e) -> :+: f g e Inr :: (g h e) -> :+: f g e -- | The subsumption relation. class :<: sub :: ((* -> *) -> * -> *) sup inj :: :<: sub sup => sub a :-> sup a proj :: :<: sub sup => NatM Maybe (sup a) (sub a) data (:*:) f g a (:*:) :: f a -> g a -> :*: f g a fst :: (f :*: g) a -> f a snd :: (f :*: g) a -> g a -- | This data type adds a constant product to a signature. Alternatively, -- this could have also been defined as -- --
-- data (f :&: a) (g :: * -> *) e = f g e :&: a e ---- -- This is too general, however, for example for -- productHTermHom. data (:&:) f a g :: (* -> *) e (:&:) :: f g e -> a -> :&: f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s :: ((* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a :-> s' a projectA :: DistAnn s p s' => s' a :-> (s a :&: p) class RemA s :: ((* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a :-> s' a instance [incoherent] DistAnn s p s' => DistAnn (f :+: s) p ((f :&: p) :+: s') instance [incoherent] DistAnn f p (f :&: p) instance [incoherent] RemA (f :&: p) f instance [incoherent] RemA s s' => RemA ((f :&: p) :+: s) (f :+: s') instance [incoherent] HTraversable f => HTraversable (f :&: a) instance [incoherent] HFoldable f => HFoldable (f :&: a) instance [incoherent] HFunctor f => HFunctor (f :&: a) instance [incoherent] f :<: g => f :<: (h :+: g) instance [incoherent] f :<: (f :+: g) instance [incoherent] f :<: f instance [incoherent] (HTraversable f, HTraversable g) => HTraversable (f :+: g) instance [incoherent] (HFoldable f, HFoldable g) => HFoldable (f :+: g) instance [incoherent] (HFunctor f, HFunctor g) => HFunctor (f :+: g) -- | This module defines sums on signatures. All definitions are -- generalised versions of those in Data.Comp.Sum. module Data.Comp.Multi.Sum -- | The subsumption relation. class :<: sub :: ((* -> *) -> * -> *) sup inj :: :<: sub sup => sub a :-> sup a proj :: :<: sub sup => NatM Maybe (sup a) (sub a) -- | Data type defining coproducts. data (:+:) f g h :: (* -> *) e proj2 :: (:<: g1 f, :<: g2 f) => f a i -> Maybe (:+: g2 g1 a i) proj3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => f a i -> Maybe (:+: g3 (:+: g2 g1) a i) proj4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => f a i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a i) proj5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => f a i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a i) proj6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => f a i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a i) proj7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => f a i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a i) proj8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => f a i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a i) proj9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => f a i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a i) proj10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => f a i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a i) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: :<: g f => NatM Maybe (Cxt h f a) (g (Cxt h f a)) project2 :: (:<: g1 f, :<: g2 f) => Cxt h f a i -> Maybe (:+: g2 g1 (Cxt h f a) i) project3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => Cxt h f a i -> Maybe (:+: g3 (:+: g2 g1) (Cxt h f a) i) project4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => Cxt h f a i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) (Cxt h f a) i) project5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => Cxt h f a i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) (Cxt h f a) i) project6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => Cxt h f a i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) (Cxt h f a) i) project7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => Cxt h f a i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) (Cxt h f a) i) project8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => Cxt h f a i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) (Cxt h f a) i) project9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => Cxt h f a i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) (Cxt h f a) i) project10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => Cxt h f a i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) (Cxt h f a) i) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (HTraversable g, :<: g f) => CxtFunM Maybe f g deepProject2 :: (HTraversable (:+: g2 g1), :<: g1 f, :<: g2 f) => CxtFunM Maybe f (:+: g2 g1) deepProject3 :: (HTraversable (:+: g3 (:+: g2 g1)), :<: g1 f, :<: g2 f, :<: g3 f) => CxtFunM Maybe f (:+: g3 (:+: g2 g1)) deepProject4 :: (HTraversable (:+: g4 (:+: g3 (:+: g2 g1))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => CxtFunM Maybe f (:+: g4 (:+: g3 (:+: g2 g1))) deepProject5 :: (HTraversable (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => CxtFunM Maybe f (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) deepProject6 :: (HTraversable (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => CxtFunM Maybe f (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) deepProject7 :: (HTraversable (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => CxtFunM Maybe f (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) deepProject8 :: (HTraversable (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => CxtFunM Maybe f (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) deepProject9 :: (HTraversable (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => CxtFunM Maybe f (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) deepProject10 :: (HTraversable (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => CxtFunM Maybe f (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))) inj2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a i -> g a i inj3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a i -> g a i inj4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a i -> g a i inj5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a i -> g a i inj6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a i -> g a i inj7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a i -> g a i inj8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a i -> g a i inj9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a i -> g a i inj10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a i -> g a i -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: :<: g f => g (Cxt h f a) :-> Cxt h f a inject2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 (Cxt h g a) i -> Cxt h g a i inject3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) (Cxt h g a) i -> Cxt h g a i inject4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) (Cxt h g a) i -> Cxt h g a i inject5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) (Cxt h g a) i -> Cxt h g a i inject6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) (Cxt h g a) i -> Cxt h g a i inject7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) (Cxt h g a) i -> Cxt h g a i inject8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) (Cxt h g a) i -> Cxt h g a i inject9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) (Cxt h g a) i -> Cxt h g a i inject10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) (Cxt h g a) i -> Cxt h g a i -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (HFunctor g, :<: g f) => CxtFun g f deepInject2 :: (HFunctor (:+: f2 f1), :<: f1 g, :<: f2 g) => CxtFun (:+: f2 f1) g deepInject3 :: (HFunctor (:+: f3 (:+: f2 f1)), :<: f1 g, :<: f2 g, :<: f3 g) => CxtFun (:+: f3 (:+: f2 f1)) g deepInject4 :: (HFunctor (:+: f4 (:+: f3 (:+: f2 f1))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => CxtFun (:+: f4 (:+: f3 (:+: f2 f1))) g deepInject5 :: (HFunctor (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => CxtFun (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) g deepInject6 :: (HFunctor (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => CxtFun (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) g deepInject7 :: (HFunctor (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => CxtFun (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) g deepInject8 :: (HFunctor (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => CxtFun (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) g deepInject9 :: (HFunctor (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => CxtFun (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) g deepInject10 :: (HFunctor (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => CxtFun (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))) g injectConst :: (HFunctor g, :<: g f) => Const g :-> Cxt h f a injectConst2 :: (HFunctor f1, HFunctor f2, HFunctor g, :<: f1 g, :<: f2 g) => Const (f1 :+: f2) :-> Cxt h g a injectConst3 :: (HFunctor f1, HFunctor f2, HFunctor f3, HFunctor g, :<: f1 g, :<: f2 g, :<: f3 g) => Const (f1 :+: (f2 :+: f3)) :-> Cxt h g a projectConst :: (HFunctor g, :<: g f) => NatM Maybe (Cxt h f a) (Const g) -- | This function injects a whole context into another context. injectCxt :: (HFunctor g, :<: g f) => Cxt h' g (Cxt h f a) :-> Cxt h f a -- | This function lifts the given functor to a context. liftCxt :: (HFunctor f, :<: g f) => g a :-> Context f a -- | This function applies the given context with hole type a to a -- family f of contexts (possibly terms) indexed by a. -- That is, each hole h is replaced by the context f h. substHoles :: (HFunctor f, HFunctor g, :<: f g) => (v :-> Cxt h g a) -> Cxt h' f v :-> Cxt h g a -- | This module defines annotations on signatures. All definitions are -- generalised versions of those in Data.Comp.Annotation. module Data.Comp.Multi.Annotation -- | This data type adds a constant product to a signature. Alternatively, -- this could have also been defined as -- --
-- data (f :&: a) (g :: * -> *) e = f g e :&: a e ---- -- This is too general, however, for example for -- productHTermHom. data (:&:) f a g :: (* -> *) e (:&:) :: f g e -> a -> :&: f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s :: ((* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a :-> s' a projectA :: DistAnn s p s' => s' a :-> (s a :&: p) class RemA s :: ((* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a :-> s' a -- | This function transforms a function with a domain constructed from a -- functor to a function with a domain constructed with the same functor -- but with an additional annotation. liftA :: RemA s s' => (s' a :-> t) -> s a :-> t -- | This function annotates each sub term of the given term with the given -- value (of type a). ann :: (DistAnn f p g, HFunctor f) => p -> CxtFun f g -- | This function transforms a function with a domain constructed from a -- functor to a function with a domain constructed with the same functor -- but with an additional annotation. liftA' :: (DistAnn s' p s, HFunctor s') => (s' a :-> Cxt h s' a) -> s a :-> Cxt h s a -- | This function strips the annotations from a term over a functor with -- annotations. stripA :: (RemA g f, HFunctor g) => CxtFun g f propAnn :: (DistAnn f p f', DistAnn g p g', HFunctor g) => TermHom f g -> TermHom f' g' project' :: (:<: s f, RemA s s') => Cxt h f a i -> Maybe (s' (Cxt h f a) i) -- | This module defines type generic functions and recursive schemes along -- the lines of the Uniplate library. All definitions are generalised -- versions of those in Data.Comp.Generic. module Data.Comp.Multi.Generic -- | This function returns a list of all subterms of the given term. This -- function is similar to Uniplate's universe function. subterms :: HFoldable f => Term f :=> [A (Term f)] -- | This function returns a list of all subterms of the given term that -- are constructed from a particular functor. subterms' :: (HFoldable f, :<: g f) => Term f :=> [A (g (Term f))] -- | This function transforms every subterm according to the given function -- in a bottom-up manner. This function is similar to Uniplate's -- transform function. transform :: HFunctor f => (Term f :-> Term f) -> Term f :-> Term f -- | Monadic version of transform. transformM :: (HTraversable f, Monad m) => NatM m (Term f) (Term f) -> NatM m (Term f) (Term f) query :: HFoldable f => (Term f :=> r) -> (r -> r -> r) -> Term f :=> r subs :: HFoldable f => Term f :=> [A (Term f)] subs' :: (HFoldable f, :<: g f) => Term f :=> [A (g (Term f))] -- | This function computes the generic size of the given term, i.e. the -- its number of subterm occurrences. size :: HFoldable f => Cxt h f a :=> Int -- | This function computes the generic depth of the given term. depth :: HFoldable f => Cxt h f a :=> Int -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- HFunctor, HFoldable, and HTraversable. module Data.Comp.Multi.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature printing. An instance HShowF f gives rise to an -- instance KShow (HTerm f). class HShowF f hshowF :: HShowF f => Alg f (K String) hshowF' :: HShowF f => f (K String) :=> String class KShow a kshow :: KShow a => a i -> K String i -- | Derive an instance of HShowF for a type constructor of any -- higher-order kind taking at least two arguments. makeHShowF :: Name -> Q [Dec] -- | Signature equality. An instance HEqF f gives rise to an -- instance KEq (HTerm f). class HEqF f heqF :: (HEqF f, KEq g) => f g i -> f g j -> Bool class KEq f keq :: KEq f => f i -> f j -> Bool -- | Derive an instance of HEqF for a type constructor of any -- higher-order kind taking at least two arguments. makeHEqF :: Name -> Q [Dec] -- | This class represents higher-order functors (Johann, Ghani, POPL '08) -- which are endofunctors on the category of endofunctors. class HFunctor h -- | Derive an instance of HFunctor for a type constructor of any -- higher-order kind taking at least two arguments. makeHFunctor :: Name -> Q [Dec] -- | Higher-order functors that can be folded. -- -- Minimal complete definition: hfoldMap or hfoldr. class HFunctor h => HFoldable h -- | Derive an instance of HFoldable for a type constructor of any -- higher-order kind taking at least two arguments. makeHFoldable :: Name -> Q [Dec] class HFoldable t => HTraversable t -- | Derive an instance of HTraversable for a type constructor of -- any higher-order kind taking at least two arguments. makeHTraversable :: Name -> Q [Dec] -- | Derive smart constructors for a type constructor of any higher-order -- kind taking at least two arguments. The smart constructors are similar -- to the ordinary constructors, but an inject is automatically -- inserted. smartConstructors :: Name -> Q [Dec] -- | Derive smart constructors with products for a type constructor of any -- parametric kind taking at least two arguments. The smart constructors -- are similar to the ordinary constructors, but an injectA is -- automatically inserted. smartAConstructors :: Name -> Q [Dec] -- | Given the name of a type class, where the first parameter is a -- higher-order functor, lift it to sums of higher-order. Example: -- class HShowF f where ... is lifted as instance (HShowF f, -- HShowF g) => HShowF (f :+: g) where ... . liftSum :: Name -> Q [Dec] -- | Utility function to case on a higher-order functor sum, without -- exposing the internal representation of sums. caseH :: (f a b -> c) -> (g a b -> c) -> (f :+: g) a b -> c -- | This module defines equality for (higher-order) signatures, which -- lifts to equality for (higher-order) terms and contexts. All -- definitions are generalised versions of those in -- Data.Comp.Equality. module Data.Comp.Multi.Equality -- | Signature equality. An instance HEqF f gives rise to an -- instance KEq (HTerm f). class HEqF f heqF :: (HEqF f, KEq g) => f g i -> f g j -> Bool class KEq f keq :: KEq f => f i -> f j -> Bool -- | This function implements equality of values of type f a -- modulo the equality of a itself. If two functorial values are -- equal in this sense, eqMod returns a Just value -- containing a list of pairs consisting of corresponding components of -- the two functorial values. heqMod :: (HEqF f, HFunctor f, HFoldable f) => f a i -> f b i -> Maybe [(A a, A b)] instance KEq Nothing instance (HEqF f, KEq a) => KEq (Cxt h f a) instance HEqF f => HEqF (Cxt h f) instance (HEqF f, HEqF g) => HEqF (f :+: g) -- | This module defines the infrastructure necessary to use Generalised -- Compositional Data Types. Generalised Compositional Data Types is -- an extension of Compositional Data Types with mutually recursive data -- types, and more generally GADTs. Examples of usage are bundled with -- the package in the library examples/Examples/Multi. module Data.Comp.Multi -- | This module defines showing of (higher-order) signatures, which lifts -- to showing of (higher-order) terms and contexts. All definitions are -- generalised versions of those in Data.Comp.Show. module Data.Comp.Multi.Show -- | Signature printing. An instance HShowF f gives rise to an -- instance KShow (HTerm f). class HShowF f hshowF :: HShowF f => Alg f (K String) hshowF' :: HShowF f => f (K String) :=> String instance (HShowF f, HShowF g) => HShowF (f :+: g) instance (HShowF f, Show p) => HShowF (f :&: p) instance KShow f => Show (f i) instance (HShowF f, HFunctor f, KShow a) => KShow (Cxt h f a) instance (HShowF f, HFunctor f) => HShowF (Cxt h f) instance KShow (K String) instance KShow Nothing -- | This module defines an abstract notion of (bound) variables in -- compositional data types, and scoped substitution. Capture-avoidance -- is not taken into account. All definitions are generalised -- versions of those in Data.Comp.Variables. module Data.Comp.Multi.Variables -- | This multiparameter class defines functors with variables. An instance -- HasVar f v denotes that values over f might contain -- and bind variables of type v. class HasVars f :: ((* -> *) -> * -> *) v isVar :: HasVars f v => f a :=> Maybe v bindsVars :: HasVars f v => f a :=> [v] type GSubst v a = NatM Maybe (K v) a type CxtSubst h a f v = GSubst v (Cxt h f a) type Subst f v = CxtSubst NoHole Nothing f v varsToHoles :: (HFunctor f, HasVars f v, Eq v) => Term f :-> Context f (K v) -- | This function checks whether a variable is contained in a context. containsVar :: (Eq v, HasVars f v, HFoldable f, HFunctor f) => v -> Cxt h f a :=> Bool -- | This function computes the set of variables occurring in a context. variables :: (Ord v, HasVars f v, HFoldable f, HFunctor f) => Cxt h f a :=> Set v -- | This function computes the list of variables occurring in a context. variableList :: (HasVars f v, HFoldable f, HFunctor f, Eq v) => Cxt h f a :=> [v] -- | This function computes the set of variables occurring in a context. variables' :: (Ord v, HasVars f v, HFoldable f, HFunctor f) => Const f :=> Set v substVars :: SubstVars v t a => GSubst v t -> a :-> a appSubst :: SubstVars v t a => GSubst v t -> a :-> a -- | This function composes two substitutions s1 and s2. -- That is, applying the resulting substitution is equivalent to first -- applying s2 and then s1. compSubst :: (Ord v, HasVars f v, HFunctor f) => CxtSubst h a f v -> CxtSubst h a f v -> CxtSubst h a f v instance [overlap ok] (SubstVars v t a, HFunctor f) => SubstVars v t (f a) instance [overlap ok] (Ord v, HasVars f v, HFunctor f) => SubstVars v (Cxt h f a) (Cxt h f a) instance [overlap ok] HasVars f v => HasVars (Cxt h f) v instance [overlap ok] (HasVars f v[a1ldN], HasVars g v[a1ldN]) => HasVars (f :+: g) v[a1ldN] -- | This modules defines the Desugar type class for desugaring of -- terms. module Data.Comp.Multi.Desugar -- | The desugaring term homomorphism. class (HFunctor f, HFunctor g) => Desugar f g desugHom :: Desugar f g => TermHom f g desugHom' :: Desugar f g => Alg f (Context g a) -- | Desugar a term. desugar :: Desugar f g => Term f :-> Term g -- | Lift desugaring to annotated terms. desugarA :: (HFunctor f', HFunctor g', DistAnn f p f', DistAnn g p g', Desugar f g) => Term f' :-> Term g' instance [overlap ok] (HFunctor f, HFunctor g, f :<: g) => Desugar f g instance [overlap ok] (Desugar f g[a1mbH], Desugar g g[a1mbH]) => Desugar (f :+: g) g[a1mbH] -- | This module provides operators on higher-order difunctors. module Data.Comp.MultiParam.Ops -- | Formal sum of signatures (difunctors). data (:+:) f g a :: (* -> *) b :: (* -> *) i Inl :: (f a b i) -> :+: f g i Inr :: (g a b i) -> :+: f g i -- | Signature containment relation for automatic injections. The left-hand -- must be an atomic signature, where as the right-hand side must have a -- list-like structure. Examples include f :<: f :+: g and -- g :<: f :+: (g :+: h), non-examples include f :+: g -- :<: f :+: (g :+: h) and f :<: (f :+: g) :+: h. class :<: sub :: ((* -> *) -> (* -> *) -> * -> *) sup inj :: :<: sub sup => sub a b :-> sup a b proj :: :<: sub sup => NatM Maybe (sup a b) (sub a b) -- | Formal product of signatures (higher-order difunctors). data (:*:) f g a b (:*:) :: f a b -> g a b -> :*: f g a b ffst :: (f :*: g) a b -> f a b fsnd :: (f :*: g) a b -> g a b -- | This data type adds a constant product to a signature. data (:&:) f p a :: (* -> *) b :: (* -> *) i (:&:) :: f a b i -> p -> :&: f p i -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s :: ((* -> *) -> (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a b :-> s' a b projectA :: DistAnn s p s' => s' a b :-> (s a b :&: p) class RemA s :: ((* -> *) -> (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a b :-> s' a b instance [incoherent] DistAnn s p s' => DistAnn (f :+: s) p ((f :&: p) :+: s') instance [incoherent] DistAnn f p (f :&: p) instance [incoherent] RemA (f :&: p) f instance [incoherent] RemA s s' => RemA ((f :&: p) :+: s) (f :+: s') instance [incoherent] HDitraversable f m a => HDitraversable (f :&: p) m a instance [incoherent] HDifunctor f => HDifunctor (f :&: p) instance [incoherent] f :<: g => f :<: (h :+: g) instance [incoherent] f :<: (f :+: g) instance [incoherent] f :<: f instance [incoherent] (HDitraversable f m a, HDitraversable g m a) => HDitraversable (f :+: g) m a instance [incoherent] (HDifunctor f, HDifunctor g) => HDifunctor (f :+: g) -- | This module provides the infrastructure to extend signatures. module Data.Comp.MultiParam.Sum -- | Signature containment relation for automatic injections. The left-hand -- must be an atomic signature, where as the right-hand side must have a -- list-like structure. Examples include f :<: f :+: g and -- g :<: f :+: (g :+: h), non-examples include f :+: g -- :<: f :+: (g :+: h) and f :<: (f :+: g) :+: h. class :<: sub :: ((* -> *) -> (* -> *) -> * -> *) sup inj :: :<: sub sup => sub a b :-> sup a b proj :: :<: sub sup => NatM Maybe (sup a b) (sub a b) -- | Formal sum of signatures (difunctors). data (:+:) f g a :: (* -> *) b :: (* -> *) i proj2 :: (:<: g1 f, :<: g2 f) => f a b i -> Maybe (:+: g2 g1 a b i) proj3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => f a b i -> Maybe (:+: g3 (:+: g2 g1) a b i) proj4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => f a b i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a b i) proj5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => f a b i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a b i) proj6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => f a b i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a b i) proj7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => f a b i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a b i) proj8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => f a b i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a b i) proj9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => f a b i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a b i) proj10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => f a b i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a b i) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: :<: g f => NatM Maybe (Cxt h f a b) (g a (Cxt h f a b)) project2 :: (:<: g1 f, :<: g2 f) => Cxt h f a b i -> Maybe (:+: g2 g1 a (Cxt h f a b) i) project3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => Cxt h f a b i -> Maybe (:+: g3 (:+: g2 g1) a (Cxt h f a b) i) project4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => Cxt h f a b i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a (Cxt h f a b) i) project5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => Cxt h f a b i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a (Cxt h f a b) i) project6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => Cxt h f a b i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a (Cxt h f a b) i) project7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => Cxt h f a b i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a (Cxt h f a b) i) project8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => Cxt h f a b i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a (Cxt h f a b) i) project9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => Cxt h f a b i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a (Cxt h f a b) i) project10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => Cxt h f a b i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a (Cxt h f a b) i) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (HDitraversable g Maybe Any, :<: g f) => CxtFunM Maybe f g deepProject2 :: (HDitraversable (:+: g2 g1) Maybe Any, :<: g1 f, :<: g2 f) => CxtFunM Maybe f (:+: g2 g1) deepProject3 :: (HDitraversable (:+: g3 (:+: g2 g1)) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f) => CxtFunM Maybe f (:+: g3 (:+: g2 g1)) deepProject4 :: (HDitraversable (:+: g4 (:+: g3 (:+: g2 g1))) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => CxtFunM Maybe f (:+: g4 (:+: g3 (:+: g2 g1))) deepProject5 :: (HDitraversable (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => CxtFunM Maybe f (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) deepProject6 :: (HDitraversable (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => CxtFunM Maybe f (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) deepProject7 :: (HDitraversable (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => CxtFunM Maybe f (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) deepProject8 :: (HDitraversable (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => CxtFunM Maybe f (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) deepProject9 :: (HDitraversable (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => CxtFunM Maybe f (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) deepProject10 :: (HDitraversable (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))) Maybe Any, :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => CxtFunM Maybe f (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))) inj2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a b i -> g a b i inj3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a b i -> g a b i inj4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a b i -> g a b i inj5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a b i -> g a b i inj6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a b i -> g a b i inj7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a b i -> g a b i inj8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a b i -> g a b i inj9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a b i -> g a b i inj10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a b i -> g a b i -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: :<: g f => g a (Cxt h f a b) :-> Cxt h f a b inject2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a (Cxt h g a b) i -> Cxt h g a b i inject3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a (Cxt h g a b) i -> Cxt h g a b i inject4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a (Cxt h g a b) i -> Cxt h g a b i inject5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a (Cxt h g a b) i -> Cxt h g a b i inject6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a (Cxt h g a b) i -> Cxt h g a b i inject7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a (Cxt h g a b) i -> Cxt h g a b i inject8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a (Cxt h g a b) i -> Cxt h g a b i inject9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a (Cxt h g a b) i -> Cxt h g a b i inject10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a (Cxt h g a b) i -> Cxt h g a b i -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (HDifunctor g, :<: g f) => CxtFun g f deepInject2 :: (HDifunctor (:+: f2 f1), :<: f1 g, :<: f2 g) => CxtFun (:+: f2 f1) g deepInject3 :: (HDifunctor (:+: f3 (:+: f2 f1)), :<: f1 g, :<: f2 g, :<: f3 g) => CxtFun (:+: f3 (:+: f2 f1)) g deepInject4 :: (HDifunctor (:+: f4 (:+: f3 (:+: f2 f1))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => CxtFun (:+: f4 (:+: f3 (:+: f2 f1))) g deepInject5 :: (HDifunctor (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => CxtFun (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) g deepInject6 :: (HDifunctor (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => CxtFun (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) g deepInject7 :: (HDifunctor (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => CxtFun (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) g deepInject8 :: (HDifunctor (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => CxtFun (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) g deepInject9 :: (HDifunctor (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => CxtFun (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) g deepInject10 :: (HDifunctor (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => CxtFun (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))) g injectConst :: (HDifunctor g, :<: g f) => Const g :-> Cxt h f Any a injectConst2 :: (HDifunctor f1, HDifunctor f2, HDifunctor g, :<: f1 g, :<: f2 g) => Const (f1 :+: f2) :-> Cxt h g Any a injectConst3 :: (HDifunctor f1, HDifunctor f2, HDifunctor f3, HDifunctor g, :<: f1 g, :<: f2 g, :<: f3 g) => Const (f1 :+: (f2 :+: f3)) :-> Cxt h g Any a projectConst :: (HDifunctor g, :<: g f) => NatM Maybe (Cxt h f Any a) (Const g) -- | This function injects a whole context into another context. injectCxt :: (HDifunctor g, :<: g f) => Cxt h g a (Cxt h f a b) :-> Cxt h f a b -- | This function lifts the given functor to a context. liftCxt :: (HDifunctor f, :<: g f) => g a b :-> Cxt Hole f a b instance [incoherent] (Eq (f a b i), Eq (g a b i)) => Eq ((:+:) f g a b i) instance [incoherent] (Ord (f a b i), Ord (g a b i)) => Ord ((:+:) f g a b i) instance [incoherent] (Show (f a b i), Show (g a b i)) => Show ((:+:) f g a b i) -- | This module defines annotations on signatures. module Data.Comp.MultiParam.Annotation -- | This data type adds a constant product to a signature. data (:&:) f p a :: (* -> *) b :: (* -> *) i (:&:) :: f a b i -> p -> :&: f p i -- | Formal product of signatures (higher-order difunctors). data (:*:) f g a b (:*:) :: f a b -> g a b -> :*: f g a b -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s :: ((* -> *) -> (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a b :-> s' a b projectA :: DistAnn s p s' => s' a b :-> (s a b :&: p) class RemA s :: ((* -> *) -> (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a b :-> s' a b -- | Transform a function with a domain constructed from a higher-order -- difunctor to a function with a domain constructed with the same -- higher-order difunctor, but with an additional annotation. liftA :: RemA s s' => (s' a b :-> t) -> s a b :-> t -- | Transform a function with a domain constructed from a higher-order -- difunctor to a function with a domain constructed with the same -- higher-order difunctor, but with an additional annotation. liftA' :: (DistAnn s' p s, HDifunctor s') => (s' a b :-> Cxt h s' c d) -> s a b :-> Cxt h s c d -- | Strip the annotations from a term over a higher-order difunctor with -- annotations. stripA :: (RemA g f, HDifunctor g) => CxtFun g f -- | Lift a term homomorphism over signatures f and g to -- a term homomorphism over the same signatures, but extended with -- annotations. propAnn :: (DistAnn f p f', DistAnn g p g', HDifunctor g) => TermHom f g -> TermHom f' g' -- | Lift a monadic term homomorphism over signatures f and -- g to a monadic term homomorphism over the same signatures, -- but extended with annotations. propAnnM :: (DistAnn f p f', DistAnn g p g', HDifunctor g, Monad m) => TermHomM m f g -> TermHomM m f' g' -- | Annotate each node of a term with a constant value. ann :: (DistAnn f p g, HDifunctor f) => p -> CxtFun f g project' :: (:<: s f, RemA s s') => Cxt h f a b i -> Maybe (s' a (Cxt h f a b) i) -- | This module defines equality for signatures, which lifts to equality -- for terms. module Data.Comp.MultiParam.Equality -- | Equality on parametric values. The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class PEq a peq :: PEq a => a i -> a j -> FreshM Bool -- | Signature equality. An instance EqHD f gives rise to an -- instance Eq (Term f i). The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class EqHD f eqHD :: (EqHD f, PEq a) => f Var a i -> f Var a j -> FreshM Bool instance [incoherent] (HDifunctor f, EqHD f) => Eq (Term f i) instance [incoherent] (EqHD f, PEq a) => PEq (Cxt h f Var a) instance [incoherent] EqHD f => EqHD (Cxt h f) instance [incoherent] PEq Var instance [incoherent] (EqHD f, EqHD g) => EqHD (f :+: g) instance [incoherent] Eq a => PEq (K a) -- | This module defines the infrastructure necessary to use Generalised -- Parametric Compositional Data Types. Generalised Parametric -- Compositional Data Types is an extension of Compositional Data Types -- with parametric higher-order abstract syntax (PHOAS) for usage with -- binders, and GADTs. Generalised Parametric Compositional Data Types -- combines Generalised Compositional Data Types (Data.Comp.Multi) -- and Parametric Compositional Data Types (Data.Comp.Param). -- Examples of usage are bundled with the package in the library -- examples/Examples/MultiParam. module Data.Comp.MultiParam -- | This module defines ordering of signatures, which lifts to ordering of -- terms and contexts. module Data.Comp.MultiParam.Ordering -- | Ordering of parametric values. class PEq a => POrd a pcompare :: POrd a => a i -> a j -> FreshM Ordering -- | Signature ordering. An instance OrdHD f gives rise to an -- instance Ord (Term f). class EqHD f => OrdHD f compareHD :: (OrdHD f, POrd a) => f Var a i -> f Var a j -> FreshM Ordering instance [incoherent] (HDifunctor f, OrdHD f) => Ord (Term f i) instance [incoherent] (OrdHD f, POrd a) => POrd (Cxt h f Var a) instance [incoherent] POrd Var instance [incoherent] OrdHD f => OrdHD (Cxt h f) instance [incoherent] (OrdHD f, OrdHD g) => OrdHD (f :+: g) instance [incoherent] Ord a => POrd (K a) -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- HDifunctor, ShowHD, and EqHD. module Data.Comp.MultiParam.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature equality. An instance EqHD f gives rise to an -- instance Eq (Term f i). The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class EqHD f eqHD :: (EqHD f, PEq a) => f Var a i -> f Var a j -> FreshM Bool -- | Derive an instance of EqHD for a type constructor of any -- parametric kind taking at least three arguments. makeEqHD :: Name -> Q [Dec] -- | Signature ordering. An instance OrdHD f gives rise to an -- instance Ord (Term f). class EqHD f => OrdHD f compareHD :: (OrdHD f, POrd a) => f Var a i -> f Var a j -> FreshM Ordering -- | Derive an instance of OrdHD for a type constructor of any -- parametric kind taking at least three arguments. makeOrdHD :: Name -> Q [Dec] -- | Printing of parametric values. class PShow a pshow :: PShow a => a i -> FreshM String -- | Signature printing. An instance ShowHD f gives rise to an -- instance Show (Term f i). class ShowHD f showHD :: (ShowHD f, PShow a) => f Var a i -> FreshM String -- | Derive an instance of ShowHD for a type constructor of any -- parametric kind taking at least three arguments. makeShowHD :: Name -> Q [Dec] -- | This class represents higher-order difunctors. class HDifunctor f -- | Derive an instance of HDifunctor for a type constructor of any -- parametric kind taking at least three arguments. makeHDifunctor :: Name -> Q [Dec] -- | Higher-order functors that can be folded. -- -- Minimal complete definition: hfoldMap or hfoldr. class HFunctor h => HFoldable h -- | Derive an instance of HFoldable for a type constructor of any -- higher-order kind taking at least two arguments. makeHFoldable :: Name -> Q [Dec] class HFoldable t => HTraversable t -- | Derive an instance of HTraversable for a type constructor of -- any higher-order kind taking at least two arguments. makeHTraversable :: Name -> Q [Dec] -- | Derive smart constructors for a type constructor of any parametric -- kind taking at least three arguments. The smart constructors are -- similar to the ordinary constructors, but an inject is -- automatically inserted. smartConstructors :: Name -> Q [Dec] -- | Derive smart constructors with products for a type constructor of any -- parametric kind taking at least three arguments. The smart -- constructors are similar to the ordinary constructors, but an -- injectA is automatically inserted. smartAConstructors :: Name -> Q [Dec] -- | Given the name of a type class, where the first parameter is a -- higher-order difunctor, lift it to sums of higher-order difunctors. -- Example: class ShowHD f where ... is lifted as instance -- (ShowHD f, ShowHD g) => ShowHD (f :+: g) where ... . liftSum :: Name -> Q [Dec] -- | Utility function to case on a higher-order difunctor sum, without -- exposing the internal representation of sums. caseHD :: (f a b i -> c) -> (g a b i -> c) -> (f :+: g) a b i -> c -- | This module defines showing of signatures, which lifts to showing of -- terms. module Data.Comp.MultiParam.Show -- | Printing of parametric values. class PShow a pshow :: PShow a => a i -> FreshM String -- | Signature printing. An instance ShowHD f gives rise to an -- instance Show (Term f i). class ShowHD f showHD :: (ShowHD f, PShow a) => f Var a i -> FreshM String instance [incoherent] (ShowHD f, PShow (K p)) => ShowHD (f :&: p) instance [incoherent] (HDifunctor f, ShowHD f) => Show (Term f i) instance [incoherent] (ShowHD f, PShow a) => PShow (Cxt h f Var a) instance [incoherent] PShow Var instance [incoherent] (ShowHD f, ShowHD g) => ShowHD (f :+: g) instance [incoherent] Show a => PShow (K a) -- | This modules defines the Desugar type class for desugaring of -- terms. module Data.Comp.MultiParam.Desugar -- | The desugaring term homomorphism. class (HDifunctor f, HDifunctor g) => Desugar f g desugHom :: Desugar f g => TermHom f g desugHom' :: Desugar f g => f a (Cxt h g a b) :-> Cxt h g a b -- | Desugar a term. desugar :: Desugar f g => Term f :-> Term g -- | Lift desugaring to annotated terms. desugarA :: (HDifunctor f', HDifunctor g', DistAnn f p f', DistAnn g p g', Desugar f g) => Term f' :-> Term g' instance [overlap ok] (HDifunctor f, HDifunctor g, f :<: g) => Desugar f g instance [overlap ok] (Desugar f g[a1EGf], Desugar g g[a1EGf]) => Desugar (f :+: g) g[a1EGf] -- | This module defines the central notion of terms and its -- generalisation to contexts. module Data.Comp.Term -- | This data type represents contexts over a signature. Contexts are -- terms containing zero or more holes. The first type parameter is -- supposed to be one of the phantom types Hole and NoHole. -- The second parameter is the signature of the context. The third -- parameter is the type of the holes. data Cxt :: * -> (* -> *) -> * -> * Term :: f (Cxt h f a) -> Cxt h f a Hole :: a -> Cxt Hole f a -- | Phantom type that signals that a Cxt might contain holes. data Hole -- | Phantom type that signals that a Cxt does not contain holes. data NoHole type Context = Cxt Hole -- | Phantom type used to define Term. data Nothing -- | A term is a context with no holes. type Term f = Cxt NoHole f Nothing -- | Polymorphic definition of a term. This formulation is more natural -- than Term, it leads to impredicative types in some cases, -- though. type PTerm f = forall h a. Cxt h f a type Const f = f () -- | This function unravels the given term at the topmost layer. unTerm :: Cxt NoHole f a -> f (Cxt NoHole f a) -- | Convert a functorial value into a context. simpCxt :: Functor f => f a -> Context f a -- | Cast a term over a signature to a context over the same signature. toCxt :: Functor f => Term f -> Cxt h f a -- | This function converts a constant to a term. This assumes that the -- argument is indeed a constant, i.e. does not have a value for the -- argument type of the functor f. constTerm :: Functor f => Const f -> Term f instance Traversable f => Traversable (Cxt h f) instance Foldable f => Foldable (Cxt h f) instance Functor f => Functor (Cxt h f) instance Show Nothing instance Ord Nothing instance Eq Nothing -- | This module defines the notion of algebras and catamorphisms, and -- their generalizations to e.g. monadic versions and other (co)recursion -- schemes. module Data.Comp.Algebra -- | This type represents an algebra over a functor f and carrier -- a. type Alg f a = f a -> a -- | Construct a catamorphism for contexts over f with holes of -- type a, from the given algebra. free :: Functor f => Alg f b -> (a -> b) -> Cxt h f a -> b -- | Construct a catamorphism from the given algebra. cata :: Functor f => Alg f a -> Term f -> a -- | A generalisation of cata from terms over f to contexts -- over f, where the holes have the type of the algebra carrier. cata' :: Functor f => Alg f a -> Cxt h f a -> a -- | This function applies a whole context into another context. appCxt :: Functor f => Context f (Cxt h f a) -> Cxt h f a -- | This type represents a monadic algebra. It is similar to Alg -- but the return type is monadic. type AlgM m f a = f a -> m a -- | Convert a monadic algebra into an ordinary algebra with a monadic -- carrier. algM :: (Traversable f, Monad m) => AlgM m f a -> Alg f (m a) -- | Construct a monadic catamorphism for contexts over f with -- holes of type a, from the given monadic algebra. freeM :: (Traversable f, Monad m) => AlgM m f b -> (a -> m b) -> Cxt h f a -> m b -- | Construct a monadic catamorphism from the given monadic algebra. cataM :: (Traversable f, Monad m) => AlgM m f a -> Term f -> m a -- | A generalisation of cataM from terms over f to -- contexts over f, where the holes have the type of the monadic -- algebra carrier. cataM' :: (Traversable f, Monad m) => AlgM m f a -> Cxt h f a -> m a -- | This type represents a context function. type CxtFun f g = forall a h. Cxt h f a -> Cxt h g a -- | This type represents a signature function. type SigFun f g = forall a. f a -> g a -- | This type represents a term homomorphism. type TermHom f g = SigFun f (Context g) -- | This function applies the given term homomorphism to a term/context. appTermHom :: (Functor f, Functor g) => TermHom f g -> CxtFun f g -- | Apply a term homomorphism recursively to a term/context. This is a -- top-down variant of appTermHom. appTermHom' :: Functor g => TermHom f g -> CxtFun f g -- | Compose two term homomorphisms. compTermHom :: (Functor g, Functor h) => TermHom g h -> TermHom f g -> TermHom f h -- | This function applies a signature function to the given context. appSigFun :: Functor f => SigFun f g -> CxtFun f g -- | This function applies a signature function to the given context. This -- is a top-down variant of appSigFun. appSigFun' :: Functor g => SigFun f g -> CxtFun f g -- | This function composes two signature functions. compSigFun :: SigFun g h -> SigFun f g -> SigFun f h -- | This function composes a signature function with a term homomorphism. compSigFunTermHom :: Functor g => SigFun g h -> TermHom f g -> TermHom f h -- | This function composes a term homomorphism with a signature function. compTermHomSigFun :: TermHom g h -> SigFun f g -> TermHom f h -- | This function composes an algebra with a signature function. compAlgSigFun :: Alg g a -> SigFun f g -> Alg f a -- | Lifts the given signature function to the canonical term homomorphism. termHom :: Functor g => SigFun f g -> TermHom f g -- | Compose an algebra with a term homomorphism to get a new algebra. compAlg :: Functor g => Alg g a -> TermHom f g -> Alg f a -- | Compose a term homomorphism with a coalgebra to get a cv-coalgebra. compCoalg :: TermHom f g -> Coalg f a -> CVCoalg' g a -- | Compose a term homomorphism with a cv-coalgebra to get a new -- cv-coalgebra. compCVCoalg :: (Functor f, Functor g) => TermHom f g -> CVCoalg' f a -> CVCoalg' g a -- | This type represents a monadic context function. type CxtFunM m f g = forall a h. Cxt h f a -> m (Cxt h g a) -- | This type represents a monadic signature function. type SigFunM m f g = forall a. f a -> m (g a) -- | This type represents a monadic term homomorphism. type TermHomM m f g = SigFunM m f (Context g) -- | This type represents a monadic signature function. It is similar to -- SigFunM but has monadic values also in the domain. type SigFunMD m f g = forall a. f (m a) -> m (g a) -- | This type represents a monadic term homomorphism. It is similar to -- TermHomM but has monadic values also in the domain. type TermHomMD m f g = SigFunMD m f (Context g) -- | Lift the given signature function to a monadic signature function. -- Note that term homomorphisms are instances of signature functions. -- Hence this function also applies to term homomorphisms. sigFunM :: Monad m => SigFun f g -> SigFunM m f g -- | Lift the give monadic signature function to a monadic term -- homomorphism. termHom' :: (Functor f, Functor g, Monad m) => SigFunM m f g -> TermHomM m f g -- | Apply a monadic term homomorphism recursively to a term/context. appTermHomM :: (Traversable f, Functor g, Monad m) => TermHomM m f g -> CxtFunM m f g -- | Apply a monadic term homomorphism recursively to a term/context. This -- a top-down variant of appTermHomM. appTermHomM' :: (Traversable g, Monad m) => TermHomM m f g -> CxtFunM m f g -- | Lift the given signature function to a monadic term homomorphism. termHomM :: (Functor g, Monad m) => SigFunM m f g -> TermHomM m f g -- | This function constructs the unique monadic homomorphism from the -- initial term algebra to the given term algebra. termHomMD :: (Traversable f, Functor g, Monad m) => TermHomMD m f g -> CxtFunM m f g -- | This function applies a monadic signature function to the given -- context. appSigFunM :: (Traversable f, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies a monadic signature function to the given -- context. This is a top-down variant of appSigFunM. appSigFunM' :: (Traversable g, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies a signature function to the given context. appSigFunMD :: (Traversable f, Functor g, Monad m) => SigFunMD m f g -> CxtFunM m f g -- | Compose two monadic term homomorphisms. compTermHomM :: (Traversable g, Functor h, Monad m) => TermHomM m g h -> TermHomM m f g -> TermHomM m f h -- | This function composes two monadic signature functions. compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h compSigFunTermHomM :: (Traversable g, Functor h, Monad m) => SigFunM m g h -> TermHomM m f g -> TermHomM m f h -- | This function composes two monadic signature functions. compTermHomSigFunM :: Monad m => TermHomM m g h -> SigFunM m f g -> TermHomM m f h -- | This function composes two monadic signature functions. compAlgSigFunM :: Monad m => AlgM m g a -> SigFunM m f g -> AlgM m f a -- | Compose a monadic algebra with a monadic term homomorphism to get a -- new monadic algebra. compAlgM :: (Traversable g, Monad m) => AlgM m g a -> TermHomM m f g -> AlgM m f a -- | Compose a monadic algebra with a term homomorphism to get a new -- monadic algebra. compAlgM' :: (Traversable g, Monad m) => AlgM m g a -> TermHom f g -> AlgM m f a -- | This type represents a coalgebra over a functor f and carrier -- a. type Coalg f a = a -> f a -- | Construct an anamorphism from the given coalgebra. ana :: Functor f => Coalg f a -> a -> Term f -- | Shortcut fusion variant of ana. ana' :: Functor f => Coalg f a -> a -> Term f -- | This type represents a monadic coalgebra over a functor f and -- carrier a. type CoalgM m f a = a -> m (f a) -- | Construct a monadic anamorphism from the given monadic coalgebra. anaM :: (Traversable f, Monad m) => CoalgM m f a -> a -> m (Term f) -- | This type represents an r-algebra over a functor f and -- carrier a. type RAlg f a = f (Term f, a) -> a -- | Construct a paramorphism from the given r-algebra. para :: Functor f => RAlg f a -> Term f -> a -- | This type represents a monadic r-algebra over a functor f and -- carrier a. type RAlgM m f a = f (Term f, a) -> m a -- | Construct a monadic paramorphism from the given monadic r-algebra. paraM :: (Traversable f, Monad m) => RAlgM m f a -> Term f -> m a -- | This type represents an r-coalgebra over a functor f and -- carrier a. type RCoalg f a = a -> f (Either (Term f) a) -- | Construct an apomorphism from the given r-coalgebra. apo :: Functor f => RCoalg f a -> a -> Term f -- | This type represents a monadic r-coalgebra over a functor f -- and carrier a. type RCoalgM m f a = a -> m (f (Either (Term f) a)) -- | Construct a monadic apomorphism from the given monadic r-coalgebra. apoM :: (Traversable f, Monad m) => RCoalgM m f a -> a -> m (Term f) -- | This type represents a cv-algebra over a functor f and -- carrier a. type CVAlg f a f' = f (Term f') -> a -- | Construct a histomorphism from the given cv-algebra. histo :: (Functor f, DistAnn f a f') => CVAlg f a f' -> Term f -> a -- | This type represents a monadic cv-algebra over a functor f -- and carrier a. type CVAlgM m f a f' = f (Term f') -> m a -- | Construct a monadic histomorphism from the given monadic cv-algebra. histoM :: (Traversable f, Monad m, DistAnn f a f') => CVAlgM m f a f' -> Term f -> m a -- | This type represents a cv-coalgebra over a functor f and -- carrier a. type CVCoalg f a = a -> f (Context f a) -- | Construct a futumorphism from the given cv-coalgebra. futu :: Functor f => CVCoalg f a -> a -> Term f -- | This type represents a generalised cv-coalgebra over a functor -- f and carrier a. type CVCoalg' f a = a -> Context f a -- | Construct a futumorphism from the given generalised cv-coalgebra. futu' :: Functor f => CVCoalg' f a -> a -> Term f -- | This type represents a monadic cv-coalgebra over a functor f -- and carrier a. type CVCoalgM m f a = a -> m (f (Context f a)) -- | Construct a monadic futumorphism from the given monadic cv-coalgebra. futuM :: (Traversable f, Monad m) => CVCoalgM m f a -> a -> m (Term f) -- | This module provides the infrastructure to extend signatures. module Data.Comp.Sum -- | Signature containment relation for automatic injections. The left-hand -- must be an atomic signature, where as the right-hand side must have a -- list-like structure. Examples include f :<: f :+: g and -- g :<: f :+: (g :+: h), non-examples include f :+: g -- :<: f :+: (g :+: h) and f :<: (f :+: g) :+: h. class :<: sub sup inj :: :<: sub sup => sub a -> sup a proj :: :<: sub sup => sup a -> Maybe (sub a) -- | Formal sum of signatures (functors). data (:+:) f g e proj2 :: (:<: g1 f, :<: g2 f) => f a -> Maybe (:+: g2 g1 a) proj3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => f a -> Maybe (:+: g3 (:+: g2 g1) a) proj4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => f a -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a) proj5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => f a -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a) proj6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => f a -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a) proj7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => f a -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a) proj8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => f a -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a) proj9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => f a -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a) proj10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => f a -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: :<: g f => Cxt h f a -> Maybe (g (Cxt h f a)) project2 :: (:<: g1 f, :<: g2 f) => Cxt h f a -> Maybe (:+: g2 g1 (Cxt h f a)) project3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => Cxt h f a -> Maybe (:+: g3 (:+: g2 g1) (Cxt h f a)) project4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => Cxt h f a -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) (Cxt h f a)) project5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => Cxt h f a -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) (Cxt h f a)) project6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => Cxt h f a -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) (Cxt h f a)) project7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => Cxt h f a -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) (Cxt h f a)) project8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => Cxt h f a -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) (Cxt h f a)) project9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => Cxt h f a -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) (Cxt h f a)) project10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => Cxt h f a -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) (Cxt h f a)) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (Traversable g, :<: g f) => CxtFunM Maybe f g deepProject2 :: (Traversable (:+: g2 g1), :<: g1 f, :<: g2 f) => CxtFunM Maybe f (:+: g2 g1) deepProject3 :: (Traversable (:+: g3 (:+: g2 g1)), :<: g1 f, :<: g2 f, :<: g3 f) => CxtFunM Maybe f (:+: g3 (:+: g2 g1)) deepProject4 :: (Traversable (:+: g4 (:+: g3 (:+: g2 g1))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => CxtFunM Maybe f (:+: g4 (:+: g3 (:+: g2 g1))) deepProject5 :: (Traversable (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => CxtFunM Maybe f (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) deepProject6 :: (Traversable (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => CxtFunM Maybe f (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) deepProject7 :: (Traversable (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => CxtFunM Maybe f (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) deepProject8 :: (Traversable (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => CxtFunM Maybe f (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) deepProject9 :: (Traversable (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => CxtFunM Maybe f (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) deepProject10 :: (Traversable (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => CxtFunM Maybe f (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))) inj2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a -> g a inj3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a -> g a inj4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a -> g a inj5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a -> g a inj6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a -> g a inj7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a -> g a inj8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a -> g a inj9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a -> g a inj10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a -> g a -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: :<: g f => g (Cxt h f a) -> Cxt h f a inject2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 (Cxt h g a) -> Cxt h g a inject3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) (Cxt h g a) -> Cxt h g a inject4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) (Cxt h g a) -> Cxt h g a inject5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) (Cxt h g a) -> Cxt h g a inject6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) (Cxt h g a) -> Cxt h g a inject7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) (Cxt h g a) -> Cxt h g a inject8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) (Cxt h g a) -> Cxt h g a inject9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) (Cxt h g a) -> Cxt h g a inject10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) (Cxt h g a) -> Cxt h g a -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (Functor g, :<: g f) => CxtFun g f deepInject2 :: (Functor (:+: f2 f1), :<: f1 g, :<: f2 g) => CxtFun (:+: f2 f1) g deepInject3 :: (Functor (:+: f3 (:+: f2 f1)), :<: f1 g, :<: f2 g, :<: f3 g) => CxtFun (:+: f3 (:+: f2 f1)) g deepInject4 :: (Functor (:+: f4 (:+: f3 (:+: f2 f1))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => CxtFun (:+: f4 (:+: f3 (:+: f2 f1))) g deepInject5 :: (Functor (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => CxtFun (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) g deepInject6 :: (Functor (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => CxtFun (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) g deepInject7 :: (Functor (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => CxtFun (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) g deepInject8 :: (Functor (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => CxtFun (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) g deepInject9 :: (Functor (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => CxtFun (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) g deepInject10 :: (Functor (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => CxtFun (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))) g injectConst :: (Functor g, :<: g f) => Const g -> Cxt h f a injectConst2 :: (Functor f1, Functor f2, Functor g, :<: f1 g, :<: f2 g) => Const (f1 :+: f2) -> Cxt h g a injectConst3 :: (Functor f1, Functor f2, Functor f3, Functor g, :<: f1 g, :<: f2 g, :<: f3 g) => Const (f1 :+: (f2 :+: f3)) -> Cxt h g a projectConst :: (Functor g, :<: g f) => Cxt h f a -> Maybe (Const g) -- | This function injects a whole context into another context. injectCxt :: (Functor g, :<: g f) => Cxt h' g (Cxt h f a) -> Cxt h f a -- | This function lifts the given functor to a context. liftCxt :: (Functor f, :<: g f) => g a -> Context f a -- | This function applies the given context with hole type a to a -- family f of contexts (possibly terms) indexed by a. -- That is, each hole h is replaced by the context f h. substHoles :: (Functor f, Functor g, :<: f g) => Cxt h' f v -> (v -> Cxt h g a) -> Cxt h g a substHoles' :: (Functor f, Functor g, :<: f g, Ord v) => Cxt h' f v -> Map v (Cxt h g a) -> Cxt h g a instance [incoherent] (Eq (f a), Eq (g a)) => Eq ((:+:) f g a) instance [incoherent] (Ord (f a), Ord (g a)) => Ord ((:+:) f g a) instance [incoherent] (Show (f a), Show (g a)) => Show ((:+:) f g a) instance [incoherent] Functor f => Monad (Context f) -- | This module defines annotations on signatures. module Data.Comp.Annotation -- | This data type adds a constant product (annotation) to a signature. data (:&:) f a e (:&:) :: f e -> a -> :&: f a e -- | Formal product of signatures (functors). data (:*:) f g a (:*:) :: f a -> g a -> :*: f g a -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a -> s' a projectA :: DistAnn s p s' => s' a -> (s a, p) class RemA s s' | s -> s' remA :: RemA s s' => s a -> s' a -- | Transform a function with a domain constructed from a functor to a -- function with a domain constructed with the same functor, but with an -- additional annotation. liftA :: RemA s s' => (s' a -> t) -> s a -> t -- | Transform a function with a domain constructed from a functor to a -- function with a domain constructed with the same functor, but with an -- additional annotation. liftA' :: (DistAnn s' p s, Functor s') => (s' a -> Cxt h s' a) -> s a -> Cxt h s a -- | Strip the annotations from a term over a functor with annotations. stripA :: (RemA g f, Functor g) => CxtFun g f -- | Lift a term homomorphism over signatures f and g to -- a term homomorphism over the same signatures, but extended with -- annotations. propAnn :: (DistAnn f p f', DistAnn g p g', Functor g) => TermHom f g -> TermHom f' g' -- | Lift a monadic term homomorphism over signatures f and -- g to a monadic term homomorphism over the same signatures, -- but extended with annotations. propAnnM :: (DistAnn f p f', DistAnn g p g', Functor g, Monad m) => TermHomM m f g -> TermHomM m f' g' -- | Annotate each node of a term with a constant value. ann :: (DistAnn f p g, Functor f) => p -> CxtFun f g project' :: (:<: s f, RemA s s') => Cxt h f a -> Maybe (s' (Cxt h f a)) -- | This module defines type generic functions and recursive schemes along -- the lines of the Uniplate library. module Data.Comp.Generic -- | This function returns a list of all subterms of the given term. This -- function is similar to Uniplate's universe function. subterms :: Foldable f => Term f -> [Term f] -- | This function returns a list of all subterms of the given term that -- are constructed from a particular functor. subterms' :: (Foldable f, :<: g f) => Term f -> [g (Term f)] -- | This function transforms every subterm according to the given function -- in a bottom-up manner. This function is similar to Uniplate's -- transform function. transform :: Functor f => (Term f -> Term f) -> Term f -> Term f transform' :: Functor f => (Term f -> Maybe (Term f)) -> Term f -> Term f -- | Monadic version of transform. transformM :: (Traversable f, Monad m) => (Term f -> m (Term f)) -> Term f -> m (Term f) query :: Foldable f => (Term f -> r) -> (r -> r -> r) -> Term f -> r gsize :: Foldable f => Term f -> Int -- | This function computes the generic size of the given term, i.e. the -- its number of subterm occurrences. size :: Foldable f => Cxt h f a -> Int -- | This function computes the generic depth of the given term. depth :: Foldable f => Cxt h f a -> Int -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- Functor, Foldable, and Traversable. module Data.Comp.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature printing. An instance ShowF f gives rise to an -- instance Show (Term f). class ShowF f showF :: ShowF f => f String -> String -- | Derive an instance of ShowF for a type constructor of any -- first-order kind taking at least one argument. makeShowF :: Name -> Q [Dec] -- | Signature equality. An instance EqF f gives rise to an -- instance Eq (Term f). class EqF f eqF :: (EqF f, Eq a) => f a -> f a -> Bool -- | Derive an instance of EqF for a type constructor of any -- first-order kind taking at least one argument. makeEqF :: Name -> Q [Dec] -- | Signature ordering. An instance OrdF f gives rise to an -- instance Ord (Term f). class EqF f => OrdF f compareF :: (OrdF f, Ord a) => f a -> f a -> Ordering -- | Derive an instance of OrdF for a type constructor of any -- first-order kind taking at least one argument. makeOrdF :: Name -> Q [Dec] -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Data.Maybe.Maybe -- and System.IO.IO satisfy these laws. class Functor f :: (* -> *) -- | Derive an instance of Functor for a type constructor of any -- first-order kind taking at least one argument. makeFunctor :: Name -> Q [Dec] -- | Data structures that can be folded. -- -- Minimal complete definition: foldMap or foldr. -- -- For example, given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l --class Foldable t :: (* -> *) -- | Derive an instance of Foldable for a type constructor of any -- first-order kind taking at least one argument. makeFoldable :: Name -> Q [Dec] -- | Functors representing data structures that can be traversed from left -- to right. -- -- Minimal complete definition: traverse or sequenceA. -- -- Instances are similar to Functor, e.g. given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Traversable Tree where -- traverse f Empty = pure Empty -- traverse f (Leaf x) = Leaf <$> f x -- traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r ---- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- --