-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Compositional Data Types -- -- Based on Wouter Swierstra's Functional Pearl Data types a la -- carte (Journal of Functional Programming, 18(4):423-436, 2008, -- http://dx.doi.org/10.1017/S0956796808006758), this package -- provides a framework for defining recursive data types in a -- compositional manner. The fundamental idea of compositional data -- types (Workshop on Generic Programming, 83-94, 2011, -- http://dx.doi.org/10.1145/2036918.2036930) is to separate the -- signature of a data type from the fixed point construction that -- produces its recursive structure. By allowing to compose and decompose -- signatures, compositional data types enable to combine data types in a -- flexible way. The key point of Wouter Swierstra's original work is to -- define functions on compositional data types in a compositional manner -- as well by leveraging Haskell's type class machinery. -- -- Building on that foundation, this library provides additional -- extensions and (run-time) optimisations which make compositional data -- types usable for practical implementations. In particular, it provides -- an excellent framework for manipulating and analysing abstract syntax -- trees in a type-safe manner. Thus, it is perfectly suited for -- programming language implementations, especially, in an environment -- consisting of a family of tightly interwoven domain-specific -- languages. -- -- In concrete terms, this package provides the following features: -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature equality. An instance EqD f gives rise to an -- instance Eq (Term f). The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class EqD f eqD :: (EqD f, PEq a) => f Name a -> f Name a -> FreshM Bool -- | Derive an instance of EqD for a type constructor of any -- parametric kind taking at least two arguments. makeEqD :: Name -> Q [Dec] -- | Signature ordering. An instance OrdD f gives rise to an -- instance Ord (Term f). class EqD f => OrdD f compareD :: (OrdD f, POrd a) => f Name a -> f Name a -> FreshM Ordering -- | Derive an instance of OrdD for a type constructor of any -- parametric kind taking at least two arguments. makeOrdD :: Name -> Q [Dec] -- | Signature printing. An instance ShowD f gives rise to an -- instance Show (Term f). class ShowD f showD :: ShowD f => f Name (FreshM String) -> FreshM String -- | Derive an instance of ShowD for a type constructor of any -- parametric kind taking at least two arguments. makeShowD :: Name -> Q [Dec] -- | This class represents difunctors, i.e. binary type constructors that -- are contravariant in the first argument and covariant in the second -- argument. class Difunctor f -- | Derive an instance of Difunctor for a type constructor of any -- parametric kind taking at least two arguments. makeDifunctor :: Name -> Q [Dec] -- | Difunctors representing data structures that can be traversed from -- left to right. class Difunctor f => Ditraversable f where dimapM f = disequence . fmap f disequence = dimapM id -- | Derive an instance of Traversable for a type constructor of -- any first-order kind taking at least one argument. makeDitraversable :: Name -> Q [Dec] -- | Derive smart constructors for a difunctor. The smart constructors are -- similar to the ordinary constructors, but a 'inject . dimap Var id' is -- automatically inserted. smartConstructors :: Name -> Q [Dec] -- | Derive smart constructors with annotations for a difunctor. The smart -- constructors are similar to the ordinary constructors, but a 'injectA -- . dimap Var id' is automatically inserted. smartAConstructors :: Name -> Q [Dec] -- | Given the name of a type class, where the first parameter is a -- difunctor, lift it to sums of difunctors. Example: class ShowD f -- where ... is lifted as instance (ShowD f, ShowD g) => -- ShowD (f :+: g) where ... . liftSum :: Name -> Q [Dec] -- | This module defines showing of signatures, which lifts to showing of -- terms. module Data.Comp.Param.Show -- | Signature printing. An instance ShowD f gives rise to an -- instance Show (Term f). class ShowD f showD :: ShowD f => f Name (FreshM String) -> FreshM String instance [incoherent] (ShowD f, Show p) => ShowD (f :&: p) instance [incoherent] (Difunctor f, ShowD f) => Show (Term f) instance [incoherent] (Difunctor f, ShowD f) => ShowD (Cxt h f) instance [incoherent] (ShowD f, ShowD g) => ShowD (f :+: g) -- | This module provides functionality to number the components of a -- functorial value with consecutive integers. module Data.Comp.Number -- | This type is used for numbering components of a functorial value. newtype Numbered a Numbered :: (Int, a) -> Numbered a unNumbered :: Numbered a -> a -- | This function numbers the components of the given functorial value -- with consecutive integers starting at 0. number :: Traversable f => f a -> f (Numbered a) -- | Functors representing data structures that can be traversed from left -- to right. -- -- Minimal complete definition: traverse or sequenceA. -- -- Instances are similar to Functor, e.g. given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Traversable Tree where -- traverse f Empty = pure Empty -- traverse f (Leaf x) = Leaf <$> f x -- traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r ---- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- --
-- data (f :&: a) (g :: * -> *) e = f g e :&: a e ---- -- This is too general, however, for example for productHHom. data (:&:) f a (g :: * -> *) e (:&:) :: f g e -> a -> :&: f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn (s :: (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a :-> s' a projectA :: DistAnn s p s' => s' a :-> (s a :&: p) class RemA (s :: (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a :-> s' a instance [incoherent] DistAnn s p s' => DistAnn (f :+: s) p ((f :&: p) :+: s') instance [incoherent] DistAnn f p (f :&: p) instance [incoherent] RemA (f :&: p) f instance [incoherent] RemA s s' => RemA ((f :&: p) :+: s) (f :+: s') instance [incoherent] HTraversable f => HTraversable (f :&: a) instance [incoherent] HFoldable f => HFoldable (f :&: a) instance [incoherent] HFunctor f => HFunctor (f :&: a) instance [incoherent] f :<: g => f :<: (h :+: g) instance [incoherent] f :<: (f :+: g) instance [incoherent] f :<: f instance [incoherent] (HTraversable f, HTraversable g) => HTraversable (f :+: g) instance [incoherent] (HFoldable f, HFoldable g) => HFoldable (f :+: g) instance [incoherent] (HFunctor f, HFunctor g) => HFunctor (f :+: g) -- | This module defines sums on signatures. All definitions are -- generalised versions of those in Data.Comp.Sum. module Data.Comp.Multi.Sum -- | The subsumption relation. class (:<:) (sub :: (* -> *) -> * -> *) sup inj :: :<: sub sup => sub a :-> sup a proj :: :<: sub sup => NatM Maybe (sup a) (sub a) -- | Data type defining coproducts. data (:+:) f g (h :: * -> *) e -- | Utility function to case on a higher-order functor sum, without -- exposing the internal representation of sums. caseH :: (f a b -> c) -> (g a b -> c) -> (f :+: g) a b -> c proj2 :: (:<: g1 f, :<: g2 f) => f a i -> Maybe (:+: g2 g1 a i) proj3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => f a i -> Maybe (:+: g3 (:+: g2 g1) a i) proj4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => f a i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a i) proj5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => f a i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a i) proj6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => f a i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a i) proj7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => f a i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a i) proj8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => f a i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a i) proj9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => f a i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a i) proj10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => f a i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a i) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: g :<: f => NatM Maybe (Cxt h f a) (g (Cxt h f a)) project2 :: (:<: g1 f, :<: g2 f) => Cxt h f a i -> Maybe (:+: g2 g1 (Cxt h f a) i) project3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => Cxt h f a i -> Maybe (:+: g3 (:+: g2 g1) (Cxt h f a) i) project4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => Cxt h f a i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) (Cxt h f a) i) project5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => Cxt h f a i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) (Cxt h f a) i) project6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => Cxt h f a i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) (Cxt h f a) i) project7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => Cxt h f a i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) (Cxt h f a) i) project8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => Cxt h f a i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) (Cxt h f a) i) project9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => Cxt h f a i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) (Cxt h f a) i) project10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => Cxt h f a i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) (Cxt h f a) i) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (HTraversable g, g :<: f) => CxtFunM Maybe f g deepProject2 :: (HTraversable (:+: g2 g1), :<: g1 f, :<: g2 f) => CxtFunM Maybe f (:+: g2 g1) deepProject3 :: (HTraversable (:+: g3 (:+: g2 g1)), :<: g1 f, :<: g2 f, :<: g3 f) => CxtFunM Maybe f (:+: g3 (:+: g2 g1)) deepProject4 :: (HTraversable (:+: g4 (:+: g3 (:+: g2 g1))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => CxtFunM Maybe f (:+: g4 (:+: g3 (:+: g2 g1))) deepProject5 :: (HTraversable (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => CxtFunM Maybe f (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) deepProject6 :: (HTraversable (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => CxtFunM Maybe f (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) deepProject7 :: (HTraversable (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => CxtFunM Maybe f (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) deepProject8 :: (HTraversable (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => CxtFunM Maybe f (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) deepProject9 :: (HTraversable (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => CxtFunM Maybe f (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) deepProject10 :: (HTraversable (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => CxtFunM Maybe f (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))) inj2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a i -> g a i inj3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a i -> g a i inj4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a i -> g a i inj5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a i -> g a i inj6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a i -> g a i inj7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a i -> g a i inj8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a i -> g a i inj9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a i -> g a i inj10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a i -> g a i -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: g :<: f => g (Cxt h f a) :-> Cxt h f a inject2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 (Cxt h g a) i -> Cxt h g a i inject3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) (Cxt h g a) i -> Cxt h g a i inject4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) (Cxt h g a) i -> Cxt h g a i inject5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) (Cxt h g a) i -> Cxt h g a i inject6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) (Cxt h g a) i -> Cxt h g a i inject7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) (Cxt h g a) i -> Cxt h g a i inject8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) (Cxt h g a) i -> Cxt h g a i inject9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) (Cxt h g a) i -> Cxt h g a i inject10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) (Cxt h g a) i -> Cxt h g a i -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (HFunctor g, g :<: f) => CxtFun g f deepInject2 :: (HFunctor (:+: f2 f1), :<: f1 g, :<: f2 g) => CxtFun (:+: f2 f1) g deepInject3 :: (HFunctor (:+: f3 (:+: f2 f1)), :<: f1 g, :<: f2 g, :<: f3 g) => CxtFun (:+: f3 (:+: f2 f1)) g deepInject4 :: (HFunctor (:+: f4 (:+: f3 (:+: f2 f1))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => CxtFun (:+: f4 (:+: f3 (:+: f2 f1))) g deepInject5 :: (HFunctor (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => CxtFun (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) g deepInject6 :: (HFunctor (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => CxtFun (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) g deepInject7 :: (HFunctor (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => CxtFun (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) g deepInject8 :: (HFunctor (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => CxtFun (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) g deepInject9 :: (HFunctor (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => CxtFun (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) g deepInject10 :: (HFunctor (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => CxtFun (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))) g injectConst :: (HFunctor g, g :<: f) => Const g :-> Cxt h f a injectConst2 :: (HFunctor f1, HFunctor f2, HFunctor g, f1 :<: g, f2 :<: g) => Const (f1 :+: f2) :-> Cxt h g a injectConst3 :: (HFunctor f1, HFunctor f2, HFunctor f3, HFunctor g, f1 :<: g, f2 :<: g, f3 :<: g) => Const (f1 :+: (f2 :+: f3)) :-> Cxt h g a projectConst :: (HFunctor g, g :<: f) => NatM Maybe (Cxt h f a) (Const g) -- | This function injects a whole context into another context. injectCxt :: (HFunctor g, g :<: f) => Cxt h' g (Cxt h f a) :-> Cxt h f a -- | This function lifts the given functor to a context. liftCxt :: (HFunctor f, g :<: f) => g a :-> Context f a -- | This function applies the given context with hole type a to a -- family f of contexts (possibly terms) indexed by a. -- That is, each hole h is replaced by the context f h. substHoles :: (HFunctor f, HFunctor g, f :<: g) => (v :-> Cxt h g a) -> Cxt h' f v :-> Cxt h g a -- | This module defines annotations on signatures. All definitions are -- generalised versions of those in Data.Comp.Annotation. module Data.Comp.Multi.Annotation -- | This data type adds a constant product to a signature. Alternatively, -- this could have also been defined as -- --
-- data (f :&: a) (g :: * -> *) e = f g e :&: a e ---- -- This is too general, however, for example for productHHom. data (:&:) f a (g :: * -> *) e (:&:) :: f g e -> a -> :&: f a e -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn (s :: (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a :-> s' a projectA :: DistAnn s p s' => s' a :-> (s a :&: p) class RemA (s :: (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a :-> s' a -- | This function transforms a function with a domain constructed from a -- functor to a function with a domain constructed with the same functor -- but with an additional annotation. liftA :: RemA s s' => (s' a :-> t) -> s a :-> t -- | This function annotates each sub term of the given term with the given -- value (of type a). ann :: (DistAnn f p g, HFunctor f) => p -> CxtFun f g -- | This function transforms a function with a domain constructed from a -- functor to a function with a domain constructed with the same functor -- but with an additional annotation. liftA' :: (DistAnn s' p s, HFunctor s') => (s' a :-> Cxt h s' a) -> s a :-> Cxt h s a -- | This function strips the annotations from a term over a functor with -- annotations. stripA :: (RemA g f, HFunctor g) => CxtFun g f propAnn :: (DistAnn f p f', DistAnn g p g', HFunctor g) => Hom f g -> Hom f' g' -- | This function is similar to project but applies to signatures -- with an annotation which is then ignored. project' :: (RemA s s', s :<: f) => Cxt h f a i -> Maybe (s' (Cxt h f a) i) -- | This module defines equality for (higher-order) signatures, which -- lifts to equality for (higher-order) terms and contexts. All -- definitions are generalised versions of those in -- Data.Comp.Equality. module Data.Comp.Multi.Equality -- | Signature equality. An instance EqHF f gives rise to an -- instance KEq (HTerm f). class EqHF f eqHF :: (EqHF f, KEq g) => f g i -> f g j -> Bool class KEq f keq :: KEq f => f i -> f j -> Bool -- | This function implements equality of values of type f a -- modulo the equality of a itself. If two functorial values are -- equal in this sense, eqMod returns a Just value -- containing a list of pairs consisting of corresponding components of -- the two functorial values. heqMod :: (EqHF f, HFunctor f, HFoldable f) => f a i -> f b i -> Maybe [(E a, E b)] instance (EqHF f, KEq a) => Eq (Cxt h f a i) instance (EqHF f, KEq a) => KEq (Cxt h f a) instance EqHF f => EqHF (Cxt h f) instance (EqHF f, EqHF g) => EqHF (f :+: g) instance KEq a => Eq (E a) instance Eq a => KEq (K a) -- | This module defines type generic functions and recursive schemes along -- the lines of the Uniplate library. All definitions are generalised -- versions of those in Data.Comp.Generic. module Data.Comp.Multi.Generic -- | This function returns a list of all subterms of the given term. This -- function is similar to Uniplate's universe function. subterms :: HFoldable f => Term f :=> [E (Term f)] -- | This function returns a list of all subterms of the given term that -- are constructed from a particular functor. subterms' :: (HFoldable f, g :<: f) => Term f :=> [E (g (Term f))] -- | This function transforms every subterm according to the given function -- in a bottom-up manner. This function is similar to Uniplate's -- transform function. transform :: HFunctor f => (Term f :-> Term f) -> Term f :-> Term f -- | Monadic version of transform. transformM :: (HTraversable f, Monad m) => NatM m (Term f) (Term f) -> NatM m (Term f) (Term f) query :: HFoldable f => (Term f :=> r) -> (r -> r -> r) -> Term f :=> r subs :: HFoldable f => Term f :=> [E (Term f)] subs' :: (HFoldable f, g :<: f) => Term f :=> [E (g (Term f))] -- | This function computes the generic size of the given term, i.e. the -- its number of subterm occurrences. size :: HFoldable f => Cxt h f a :=> Int -- | This function computes the generic depth of the given term. depth :: HFoldable f => Cxt h f a :=> Int -- | This module defines the infrastructure necessary to use Generalised -- Compositional Data Types. Generalised Compositional Data Types is -- an extension of Compositional Data Types with mutually recursive data -- types, and more generally GADTs. Examples of usage are bundled with -- the package in the library examples/Examples/Multi. module Data.Comp.Multi -- | This modules defines the Desugar type class for desugaring of -- terms. module Data.Comp.Multi.Desugar -- | The desugaring term homomorphism. class (HFunctor f, HFunctor g) => Desugar f g where desugHom = desugHom' . hfmap Hole desugHom' x = appCxt (desugHom x) desugHom :: Desugar f g => Hom f g desugHom' :: Desugar f g => Alg f (Context g a) -- | Desugar a term. desugar :: Desugar f g => Term f :-> Term g -- | Lift desugaring to annotated terms. desugarA :: (HFunctor f', HFunctor g', DistAnn f p f', DistAnn g p g', Desugar f g) => Term f' :-> Term g' instance [overlap ok] (HFunctor f, HFunctor g, f :<: g) => Desugar f g instance [overlap ok] (Desugar f h, Desugar g h) => Desugar (f :+: g) h -- | This module defines ordering of signatures, which lifts to ordering of -- terms and contexts. module Data.Comp.Multi.Ordering class KEq f => KOrd f kcompare :: KOrd f => f i -> f j -> Ordering -- | Signature ordering. An instance OrdHF f gives rise to an -- instance Ord (Term f). class EqHF f => OrdHF f compareHF :: (OrdHF f, KOrd a) => f a i -> f a j -> Ordering instance [incoherent] (HFunctor f, OrdHF f, KOrd a) => Ord (Cxt h f a i) instance [incoherent] (HFunctor f, OrdHF f, KOrd a) => KOrd (Cxt h f a) instance [incoherent] (HFunctor f, OrdHF f) => OrdHF (Cxt h f) instance [incoherent] (OrdHF f, OrdHF g) => OrdHF (f :+: g) instance [incoherent] Ord a => KOrd (K a) instance [incoherent] KOrd f => Ord (E f) -- | This module provides functionality to number the components of a -- functorial value with consecutive integers. module Data.Comp.Multi.Number -- | This type is used for numbering components of a functorial value. newtype Numbered a i Numbered :: (Int, a i) -> Numbered a i unNumbered :: Numbered a :-> a -- | This function numbers the components of the given functorial value -- with consecutive integers starting at 0. number :: HTraversable f => f a :-> f (Numbered a) class HFoldable t => HTraversable t instance KOrd (Numbered a) instance KEq (Numbered a) -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- HFunctor, HFoldable, and HTraversable. module Data.Comp.Multi.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature printing. An instance ShowHF f gives rise to an -- instance KShow (HTerm f). class ShowHF f where showHF = K . showHF' showHF' = unK . showHF showHF :: ShowHF f => Alg f (K String) showHF' :: ShowHF f => f (K String) :=> String class KShow a kshow :: KShow a => a i -> K String i -- | Derive an instance of ShowHF for a type constructor of any -- higher-order kind taking at least two arguments. makeShowHF :: Name -> Q [Dec] -- | Signature equality. An instance EqHF f gives rise to an -- instance KEq (HTerm f). class EqHF f eqHF :: (EqHF f, KEq g) => f g i -> f g j -> Bool class KEq f keq :: KEq f => f i -> f j -> Bool -- | Derive an instance of EqHF for a type constructor of any -- higher-order kind taking at least two arguments. makeEqHF :: Name -> Q [Dec] -- | Signature ordering. An instance OrdHF f gives rise to an -- instance Ord (Term f). class EqHF f => OrdHF f compareHF :: (OrdHF f, KOrd a) => f a i -> f a j -> Ordering -- | Derive an instance of OrdHF for a type constructor of any -- parametric kind taking at least three arguments. makeOrdHF :: Name -> Q [Dec] -- | This class represents higher-order functors (Johann, Ghani, POPL '08) -- which are endofunctors on the category of endofunctors. class HFunctor h -- | Derive an instance of HFunctor for a type constructor of any -- higher-order kind taking at least two arguments. makeHFunctor :: Name -> Q [Dec] -- | Higher-order functors that can be folded. -- -- Minimal complete definition: hfoldMap or hfoldr. class HFunctor h => HFoldable h where hfold = hfoldMap unK hfoldMap f = hfoldr (mappend . f) mempty hfoldr f z t = appEndo (hfoldMap (Endo . f) t) z hfoldl f z t = appEndo (getDual (hfoldMap (Dual . Endo . flip f) t)) z hfoldr1 f xs = fromMaybe (error "hfoldr1: empty structure") (hfoldr mf Nothing xs) where mf :: K a :=> (Maybe a -> Maybe a) mf (K x) Nothing = Just x mf (K x) (Just y) = Just (f x y) hfoldl1 f xs = fromMaybe (error "hfoldl1: empty structure") (hfoldl mf Nothing xs) where mf :: Maybe a -> K a :=> Maybe a mf Nothing (K y) = Just y mf (Just x) (K y) = Just (f x y) -- | Derive an instance of HFoldable for a type constructor of any -- higher-order kind taking at least two arguments. makeHFoldable :: Name -> Q [Dec] class HFoldable t => HTraversable t -- | Derive an instance of HTraversable for a type constructor of -- any higher-order kind taking at least two arguments. makeHTraversable :: Name -> Q [Dec] -- | Derive smart constructors for a type constructor of any higher-order -- kind taking at least two arguments. The smart constructors are similar -- to the ordinary constructors, but an inject is automatically -- inserted. smartConstructors :: Name -> Q [Dec] -- | Derive smart constructors with products for a type constructor of any -- parametric kind taking at least two arguments. The smart constructors -- are similar to the ordinary constructors, but an injectA is -- automatically inserted. smartAConstructors :: Name -> Q [Dec] -- | Given the name of a type class, where the first parameter is a -- higher-order functor, lift it to sums of higher-order. Example: -- class HShowF f where ... is lifted as instance (HShowF f, -- HShowF g) => HShowF (f :+: g) where ... . liftSum :: Name -> Q [Dec] -- | This module defines showing of (higher-order) signatures, which lifts -- to showing of (higher-order) terms and contexts. All definitions are -- generalised versions of those in Data.Comp.Show. module Data.Comp.Multi.Show -- | Signature printing. An instance ShowHF f gives rise to an -- instance KShow (HTerm f). class ShowHF f where showHF = K . showHF' showHF' = unK . showHF showHF :: ShowHF f => Alg f (K String) showHF' :: ShowHF f => f (K String) :=> String instance (ShowHF f, ShowHF g) => ShowHF (f :+: g) instance (ShowHF f, Show p) => ShowHF (f :&: p) instance KShow (Cxt h f a) => Show (Cxt h f a i) instance (ShowHF f, HFunctor f, KShow a) => KShow (Cxt h f a) instance (ShowHF f, HFunctor f) => ShowHF (Cxt h f) instance KShow (K ()) instance KShow (K String) -- | This module defines an abstract notion of (bound) variables in -- compositional data types, and scoped substitution. Capture-avoidance -- is not taken into account. All definitions are generalised -- versions of those in Data.Comp.Variables. module Data.Comp.Multi.Variables -- | This multiparameter class defines functors with variables. An instance -- HasVar f v denotes that values over f might contain -- and bind variables of type v. class HasVars (f :: (* -> *) -> * -> *) v where isVar _ = Nothing bindsVars _ = empty isVar :: HasVars f v => f a :=> Maybe v bindsVars :: (HasVars f v, KOrd a) => f a :=> Map (E a) (Set v) type GSubst v a = Map v (A a) type CxtSubst h a f v = GSubst v (Cxt h f a) type Subst f v = CxtSubst NoHole (K ()) f v varsToHoles :: (HTraversable f, HasVars f v, Ord v) => Term f :-> Context f (K v) -- | This function checks whether a variable is contained in a context. containsVar :: (Ord v, HasVars f v, HTraversable f, HFunctor f) => v -> Cxt h f a :=> Bool -- | This function computes the set of variables occurring in a context. variables :: (Ord v, HasVars f v, HTraversable f, HFunctor f) => Cxt h f a :=> Set v -- | This function computes the list of variables occurring in a context. variableList :: (HasVars f v, HTraversable f, HFunctor f, Ord v) => Cxt h f a :=> [v] -- | This function computes the set of variables occurring in a context. variables' :: (Ord v, HasVars f v, HFoldable f, HFunctor f) => Const f :=> Set v appSubst :: (Ord v, SubstVars v t a) => GSubst v t -> a :-> a -- | This function composes two substitutions s1 and s2. -- That is, applying the resulting substitution is equivalent to first -- applying s2 and then s1. compSubst :: (Ord v, HasVars f v, HTraversable f) => CxtSubst h a f v -> CxtSubst h a f v -> CxtSubst h a f v -- | This combinator pairs every argument of a given constructor with the -- set of (newly) bound variables according to the corresponding -- HasVars type class instance. getBoundVars :: (HasVars f v, HTraversable f) => f a i -> f (a :*: K (Set v)) i instance [overlap ok] (SubstVars v t a, HFunctor f) => SubstVars v t (f a) instance [overlap ok] (Ord v, HasVars f v, HTraversable f) => SubstVars v (Cxt h f a) (Cxt h f a) instance [overlap ok] (HasVars f v0, HasVars g v0) => HasVars (f :+: g) v0 -- | This module provides operators on higher-order difunctors. module Data.Comp.MultiParam.Ops -- | Formal sum of signatures (difunctors). data (:+:) f g (a :: * -> *) (b :: * -> *) i Inl :: (f a b i) -> :+: f g i Inr :: (g a b i) -> :+: f g i -- | Utility function to case on a higher-order difunctor sum, without -- exposing the internal representation of sums. caseHD :: (f a b i -> c) -> (g a b i -> c) -> (f :+: g) a b i -> c -- | Signature containment relation for automatic injections. The left-hand -- must be an atomic signature, where as the right-hand side must have a -- list-like structure. Examples include f :<: f :+: g and -- g :<: f :+: (g :+: h), non-examples include f :+: g -- :<: f :+: (g :+: h) and f :<: (f :+: g) :+: h. class (:<:) (sub :: (* -> *) -> (* -> *) -> * -> *) sup inj :: :<: sub sup => sub a b :-> sup a b proj :: :<: sub sup => NatM Maybe (sup a b) (sub a b) -- | Formal product of signatures (higher-order difunctors). data (:*:) f g a b (:*:) :: f a b -> g a b -> :*: f g a b ffst :: (f :*: g) a b -> f a b fsnd :: (f :*: g) a b -> g a b -- | This data type adds a constant product to a signature. data (:&:) f p (a :: * -> *) (b :: * -> *) i (:&:) :: f a b i -> p -> :&: f p i -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn (s :: (* -> *) -> (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a b :-> s' a b projectA :: DistAnn s p s' => s' a b :-> (s a b :&: p) class RemA (s :: (* -> *) -> (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a b :-> s' a b instance [incoherent] DistAnn s p s' => DistAnn (f :+: s) p ((f :&: p) :+: s') instance [incoherent] DistAnn f p (f :&: p) instance [incoherent] RemA (f :&: p) f instance [incoherent] RemA s s' => RemA ((f :&: p) :+: s) (f :+: s') instance [incoherent] HDitraversable f => HDitraversable (f :&: p) instance [incoherent] HDifunctor f => HDifunctor (f :&: p) instance [incoherent] f :<: g => f :<: (h :+: g) instance [incoherent] f :<: (f :+: g) instance [incoherent] f :<: f instance [incoherent] (HDitraversable f, HDitraversable g) => HDitraversable (f :+: g) instance [incoherent] (HDifunctor f, HDifunctor g) => HDifunctor (f :+: g) -- | This module provides the infrastructure to extend signatures. module Data.Comp.MultiParam.Sum -- | Signature containment relation for automatic injections. The left-hand -- must be an atomic signature, where as the right-hand side must have a -- list-like structure. Examples include f :<: f :+: g and -- g :<: f :+: (g :+: h), non-examples include f :+: g -- :<: f :+: (g :+: h) and f :<: (f :+: g) :+: h. class (:<:) (sub :: (* -> *) -> (* -> *) -> * -> *) sup inj :: :<: sub sup => sub a b :-> sup a b proj :: :<: sub sup => NatM Maybe (sup a b) (sub a b) -- | Formal sum of signatures (difunctors). data (:+:) f g (a :: * -> *) (b :: * -> *) i -- | Utility function to case on a higher-order difunctor sum, without -- exposing the internal representation of sums. caseHD :: (f a b i -> c) -> (g a b i -> c) -> (f :+: g) a b i -> c proj2 :: (:<: g1 f, :<: g2 f) => f a b i -> Maybe (:+: g2 g1 a b i) proj3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => f a b i -> Maybe (:+: g3 (:+: g2 g1) a b i) proj4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => f a b i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a b i) proj5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => f a b i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a b i) proj6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => f a b i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a b i) proj7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => f a b i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a b i) proj8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => f a b i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a b i) proj9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => f a b i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a b i) proj10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => f a b i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a b i) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: g :<: f => NatM Maybe (Cxt h f a b) (g a (Cxt h f a b)) project2 :: (:<: g1 f, :<: g2 f) => Cxt h f a b i -> Maybe (:+: g2 g1 a (Cxt h f a b) i) project3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => Cxt h f a b i -> Maybe (:+: g3 (:+: g2 g1) a (Cxt h f a b) i) project4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => Cxt h f a b i -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a (Cxt h f a b) i) project5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => Cxt h f a b i -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a (Cxt h f a b) i) project6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => Cxt h f a b i -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a (Cxt h f a b) i) project7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => Cxt h f a b i -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a (Cxt h f a b) i) project8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => Cxt h f a b i -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a (Cxt h f a b) i) project9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => Cxt h f a b i -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a (Cxt h f a b) i) project10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => Cxt h f a b i -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a (Cxt h f a b) i) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (HDitraversable g, g :<: f) => Term f i -> Maybe (Term g i) deepProject2 :: (HDitraversable (:+: g2 g1), :<: g1 f, :<: g2 f) => Term f i -> Maybe (Term (:+: g2 g1) i) deepProject3 :: (HDitraversable (:+: g3 (:+: g2 g1)), :<: g1 f, :<: g2 f, :<: g3 f) => Term f i -> Maybe (Term (:+: g3 (:+: g2 g1)) i) deepProject4 :: (HDitraversable (:+: g4 (:+: g3 (:+: g2 g1))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => Term f i -> Maybe (Term (:+: g4 (:+: g3 (:+: g2 g1))) i) deepProject5 :: (HDitraversable (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => Term f i -> Maybe (Term (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) i) deepProject6 :: (HDitraversable (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => Term f i -> Maybe (Term (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) i) deepProject7 :: (HDitraversable (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => Term f i -> Maybe (Term (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) i) deepProject8 :: (HDitraversable (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => Term f i -> Maybe (Term (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) i) deepProject9 :: (HDitraversable (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => Term f i -> Maybe (Term (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) i) deepProject10 :: (HDitraversable (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => Term f i -> Maybe (Term (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))) i) inj2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a b i -> g a b i inj3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a b i -> g a b i inj4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a b i -> g a b i inj5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a b i -> g a b i inj6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a b i -> g a b i inj7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a b i -> g a b i inj8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a b i -> g a b i inj9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a b i -> g a b i inj10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a b i -> g a b i -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: g :<: f => g a (Cxt h f a b) :-> Cxt h f a b inject2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a (Cxt h g a b) i -> Cxt h g a b i inject3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a (Cxt h g a b) i -> Cxt h g a b i inject4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a (Cxt h g a b) i -> Cxt h g a b i inject5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a (Cxt h g a b) i -> Cxt h g a b i inject6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a (Cxt h g a b) i -> Cxt h g a b i inject7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a (Cxt h g a b) i -> Cxt h g a b i inject8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a (Cxt h g a b) i -> Cxt h g a b i inject9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a (Cxt h g a b) i -> Cxt h g a b i inject10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a (Cxt h g a b) i -> Cxt h g a b i -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (HDifunctor g, g :<: f) => CxtFun g f deepInject2 :: (HDifunctor (:+: f2 f1), :<: f1 g, :<: f2 g) => CxtFun (:+: f2 f1) g deepInject3 :: (HDifunctor (:+: f3 (:+: f2 f1)), :<: f1 g, :<: f2 g, :<: f3 g) => CxtFun (:+: f3 (:+: f2 f1)) g deepInject4 :: (HDifunctor (:+: f4 (:+: f3 (:+: f2 f1))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => CxtFun (:+: f4 (:+: f3 (:+: f2 f1))) g deepInject5 :: (HDifunctor (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => CxtFun (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) g deepInject6 :: (HDifunctor (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => CxtFun (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) g deepInject7 :: (HDifunctor (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => CxtFun (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) g deepInject8 :: (HDifunctor (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => CxtFun (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) g deepInject9 :: (HDifunctor (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => CxtFun (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) g deepInject10 :: (HDifunctor (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => CxtFun (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))) g -- | This function injects a whole context into another context. injectCxt :: (HDifunctor g, g :<: f) => Cxt h g a (Cxt h f a b) :-> Cxt h f a b -- | This function lifts the given functor to a context. liftCxt :: (HDifunctor f, g :<: f) => g a b :-> Cxt Hole f a b instance [incoherent] (Eq (f a b i), Eq (g a b i)) => Eq ((:+:) f g a b i) instance [incoherent] (Ord (f a b i), Ord (g a b i)) => Ord ((:+:) f g a b i) instance [incoherent] (Show (f a b i), Show (g a b i)) => Show ((:+:) f g a b i) -- | This module defines annotations on signatures. module Data.Comp.MultiParam.Annotation -- | This data type adds a constant product to a signature. data (:&:) f p (a :: * -> *) (b :: * -> *) i (:&:) :: f a b i -> p -> :&: f p i -- | Formal product of signatures (higher-order difunctors). data (:*:) f g a b (:*:) :: f a b -> g a b -> :*: f g a b -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn (s :: (* -> *) -> (* -> *) -> * -> *) p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a b :-> s' a b projectA :: DistAnn s p s' => s' a b :-> (s a b :&: p) class RemA (s :: (* -> *) -> (* -> *) -> * -> *) s' | s -> s' remA :: RemA s s' => s a b :-> s' a b -- | Transform a function with a domain constructed from a higher-order -- difunctor to a function with a domain constructed with the same -- higher-order difunctor, but with an additional annotation. liftA :: RemA s s' => (s' a b :-> t) -> s a b :-> t -- | Transform a function with a domain constructed from a higher-order -- difunctor to a function with a domain constructed with the same -- higher-order difunctor, but with an additional annotation. liftA' :: (DistAnn s' p s, HDifunctor s') => (s' a b :-> Cxt h s' c d) -> s a b :-> Cxt h s c d -- | Strip the annotations from a term over a higher-order difunctor with -- annotations. stripA :: (RemA g f, HDifunctor g) => CxtFun g f -- | Lift a term homomorphism over signatures f and g to -- a term homomorphism over the same signatures, but extended with -- annotations. propAnn :: (DistAnn f p f', DistAnn g p g', HDifunctor g) => Hom f g -> Hom f' g' -- | Lift a monadic term homomorphism over signatures f and -- g to a monadic term homomorphism over the same signatures, -- but extended with annotations. propAnnM :: (DistAnn f p f', DistAnn g p g', HDifunctor g, Monad m) => HomM m f g -> HomM m f' g' -- | Annotate each node of a term with a constant value. ann :: (DistAnn f p g, HDifunctor f) => p -> CxtFun f g -- | This function is similar to project but applies to signatures -- with an annotation which is then ignored. project' :: (RemA s s', s :<: f) => Cxt h f a b i -> Maybe (s' a (Cxt h f a b) i) -- | This module defines equality for signatures, which lifts to equality -- for terms. module Data.Comp.MultiParam.Equality -- | Equality on parametric values. The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class PEq a peq :: PEq a => a i -> a j -> FreshM Bool -- | Signature equality. An instance EqHD f gives rise to an -- instance Eq (Term f i). The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class EqHD f eqHD :: (EqHD f, PEq a) => f Name a i -> f Name a j -> FreshM Bool instance [incoherent] (HDifunctor f, EqHD f) => Eq (Term f i) instance [incoherent] (EqHD f, PEq a) => PEq (Cxt h f Name a) instance [incoherent] EqHD f => EqHD (Cxt h f) instance [incoherent] PEq Name instance [incoherent] (EqHD f, EqHD g) => EqHD (f :+: g) instance [incoherent] Eq a => PEq (K a) -- | This module defines the infrastructure necessary to use Generalised -- Parametric Compositional Data Types. Generalised Parametric -- Compositional Data Types is an extension of Compositional Data Types -- with parametric higher-order abstract syntax (PHOAS) for usage with -- binders, and GADTs. Generalised Parametric Compositional Data Types -- combines Generalised Compositional Data Types (Data.Comp.Multi) -- and Parametric Compositional Data Types (Data.Comp.Param). -- Examples of usage are bundled with the package in the library -- examples/Examples/MultiParam. module Data.Comp.MultiParam -- | This modules defines the Desugar type class for desugaring of -- terms. module Data.Comp.MultiParam.Desugar -- | The desugaring term homomorphism. class (HDifunctor f, HDifunctor g) => Desugar f g where desugHom = desugHom' . hfmap Hole desugHom' x = appCxt (desugHom x) desugHom :: Desugar f g => Hom f g desugHom' :: Desugar f g => f a (Cxt h g a b) :-> Cxt h g a b -- | Desugar a term. desugar :: Desugar f g => Term f :-> Term g -- | Lift desugaring to annotated terms. desugarA :: (HDifunctor f', HDifunctor g', DistAnn f p f', DistAnn g p g', Desugar f g) => Term f' :-> Term g' instance [overlap ok] (HDifunctor f, HDifunctor g, f :<: g) => Desugar f g instance [overlap ok] (Desugar f h, Desugar g h) => Desugar (f :+: g) h -- | This module defines ordering of signatures, which lifts to ordering of -- terms and contexts. module Data.Comp.MultiParam.Ordering -- | Ordering of parametric values. class PEq a => POrd a pcompare :: POrd a => a i -> a j -> FreshM Ordering -- | Signature ordering. An instance OrdHD f gives rise to an -- instance Ord (Term f). class EqHD f => OrdHD f compareHD :: (OrdHD f, POrd a) => f Name a i -> f Name a j -> FreshM Ordering instance [incoherent] (HDifunctor f, OrdHD f) => Ord (Term f i) instance [incoherent] (OrdHD f, POrd a) => POrd (Cxt h f Name a) instance [incoherent] POrd Name instance [incoherent] OrdHD f => OrdHD (Cxt h f) instance [incoherent] (OrdHD f, OrdHD g) => OrdHD (f :+: g) instance [incoherent] Ord a => POrd (K a) -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- HDifunctor, ShowHD, and EqHD. module Data.Comp.MultiParam.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature equality. An instance EqHD f gives rise to an -- instance Eq (Term f i). The equality test is performed inside -- the FreshM monad for generating fresh identifiers. class EqHD f eqHD :: (EqHD f, PEq a) => f Name a i -> f Name a j -> FreshM Bool -- | Derive an instance of EqHD for a type constructor of any -- parametric kind taking at least three arguments. makeEqHD :: Name -> Q [Dec] -- | Signature ordering. An instance OrdHD f gives rise to an -- instance Ord (Term f). class EqHD f => OrdHD f compareHD :: (OrdHD f, POrd a) => f Name a i -> f Name a j -> FreshM Ordering -- | Derive an instance of OrdHD for a type constructor of any -- parametric kind taking at least three arguments. makeOrdHD :: Name -> Q [Dec] -- | Signature printing. An instance ShowHD f gives rise to an -- instance Show (Term f i). class ShowHD f showHD :: ShowHD f => f Name (K (FreshM String)) i -> FreshM String -- | Derive an instance of ShowHD for a type constructor of any -- parametric kind taking at least three arguments. makeShowHD :: Name -> Q [Dec] -- | This class represents higher-order difunctors. class HDifunctor f -- | Derive an instance of HDifunctor for a type constructor of any -- parametric kind taking at least three arguments. makeHDifunctor :: Name -> Q [Dec] -- | Derive smart constructors for a higher-order difunctor. The smart -- constructors are similar to the ordinary constructors, but a 'inject . -- hdimap Var id' is automatically inserted. smartConstructors :: Name -> Q [Dec] -- | Derive smart constructors with annotations for a higher-order -- difunctor. The smart constructors are similar to the ordinary -- constructors, but a 'injectA . hdimap Var id' is automatically -- inserted. smartAConstructors :: Name -> Q [Dec] -- | Given the name of a type class, where the first parameter is a -- higher-order difunctor, lift it to sums of higher-order difunctors. -- Example: class ShowHD f where ... is lifted as instance -- (ShowHD f, ShowHD g) => ShowHD (f :+: g) where ... . liftSum :: Name -> Q [Dec] -- | This module defines showing of signatures, which lifts to showing of -- terms. module Data.Comp.MultiParam.Show -- | Signature printing. An instance ShowHD f gives rise to an -- instance Show (Term f i). class ShowHD f showHD :: ShowHD f => f Name (K (FreshM String)) i -> FreshM String instance [incoherent] (ShowHD f, Show p) => ShowHD (f :&: p) instance [incoherent] (HDifunctor f, ShowHD f) => Show (Term f i) instance [incoherent] (HDifunctor f, ShowHD f) => ShowHD (Cxt h f) instance [incoherent] (ShowHD f, ShowHD g) => ShowHD (f :+: g) -- | This module defines the central notion of terms and its -- generalisation to contexts. module Data.Comp.Term -- | This data type represents contexts over a signature. Contexts are -- terms containing zero or more holes. The first type parameter is -- supposed to be one of the phantom types Hole and NoHole. -- The second parameter is the signature of the context. The third -- parameter is the type of the holes. data Cxt :: * -> (* -> *) -> * -> * Term :: f (Cxt h f a) -> Cxt h f a Hole :: a -> Cxt Hole f a -- | Phantom type that signals that a Cxt might contain holes. data Hole -- | Phantom type that signals that a Cxt does not contain holes. data NoHole type Context = Cxt Hole -- | A term is a context with no holes. type Term f = Cxt NoHole f () -- | Polymorphic definition of a term. This formulation is more natural -- than Term, it leads to impredicative types in some cases, -- though. type PTerm f = forall h a. Cxt h f a type Const f = f () -- | This function unravels the given term at the topmost layer. unTerm :: Cxt NoHole f a -> f (Cxt NoHole f a) -- | Convert a functorial value into a context. simpCxt :: Functor f => f a -> Context f a -- | Cast a term over a signature to a context over the same signature. toCxt :: Functor f => Term f -> Cxt h f a -- | This function converts a constant to a term. This assumes that the -- argument is indeed a constant, i.e. does not have a value for the -- argument type of the functor f. constTerm :: Functor f => Const f -> Term f instance Traversable f => Traversable (Cxt h f) instance Foldable f => Foldable (Cxt h f) instance Functor f => Functor (Cxt h f) -- | This module defines the notion of algebras and catamorphisms, and -- their generalizations to e.g. monadic versions and other (co)recursion -- schemes. module Data.Comp.Algebra -- | This type represents an algebra over a functor f and carrier -- a. type Alg f a = f a -> a -- | Construct a catamorphism for contexts over f with holes of -- type a, from the given algebra. free :: Functor f => Alg f b -> (a -> b) -> Cxt h f a -> b -- | Construct a catamorphism from the given algebra. cata :: Functor f => Alg f a -> Term f -> a -- | A generalisation of cata from terms over f to contexts -- over f, where the holes have the type of the algebra carrier. cata' :: Functor f => Alg f a -> Cxt h f a -> a -- | This function applies a whole context into another context. appCxt :: Functor f => Context f (Cxt h f a) -> Cxt h f a -- | This type represents a monadic algebra. It is similar to Alg -- but the return type is monadic. type AlgM m f a = f a -> m a -- | Convert a monadic algebra into an ordinary algebra with a monadic -- carrier. algM :: (Traversable f, Monad m) => AlgM m f a -> Alg f (m a) -- | Construct a monadic catamorphism for contexts over f with -- holes of type a, from the given monadic algebra. freeM :: (Traversable f, Monad m) => AlgM m f b -> (a -> m b) -> Cxt h f a -> m b -- | Construct a monadic catamorphism from the given monadic algebra. cataM :: (Traversable f, Monad m) => AlgM m f a -> Term f -> m a -- | A generalisation of cataM from terms over f to -- contexts over f, where the holes have the type of the monadic -- algebra carrier. cataM' :: (Traversable f, Monad m) => AlgM m f a -> Cxt h f a -> m a -- | This type represents a context function. type CxtFun f g = forall a h. Cxt h f a -> Cxt h g a -- | This type represents a signature function. type SigFun f g = forall a. f a -> g a -- | This type represents a term homomorphism. type Hom f g = SigFun f (Context g) -- | This function applies the given term homomorphism to a term/context. appHom :: (Functor f, Functor g) => Hom f g -> CxtFun f g -- | Apply a term homomorphism recursively to a term/context. This is a -- top-down variant of appHom. appHom' :: Functor g => Hom f g -> CxtFun f g -- | Compose two term homomorphisms. compHom :: (Functor g, Functor h) => Hom g h -> Hom f g -> Hom f h -- | This function applies a signature function to the given context. appSigFun :: Functor f => SigFun f g -> CxtFun f g -- | This function applies a signature function to the given context. This -- is a top-down variant of appSigFun. appSigFun' :: Functor g => SigFun f g -> CxtFun f g -- | This function composes two signature functions. compSigFun :: SigFun g h -> SigFun f g -> SigFun f h -- | This function composes a signature function with a term homomorphism. compSigFunHom :: Functor g => SigFun g h -> Hom f g -> Hom f h -- | This function composes a term homomorphism with a signature function. compHomSigFun :: Hom g h -> SigFun f g -> Hom f h -- | This function composes an algebra with a signature function. compAlgSigFun :: Alg g a -> SigFun f g -> Alg f a -- | Lifts the given signature function to the canonical term homomorphism. hom :: Functor g => SigFun f g -> Hom f g -- | Compose an algebra with a term homomorphism to get a new algebra. compAlg :: Functor g => Alg g a -> Hom f g -> Alg f a -- | Compose a term homomorphism with a coalgebra to get a cv-coalgebra. compCoalg :: Hom f g -> Coalg f a -> CVCoalg' g a -- | Compose a term homomorphism with a cv-coalgebra to get a new -- cv-coalgebra. compCVCoalg :: (Functor f, Functor g) => Hom f g -> CVCoalg' f a -> CVCoalg' g a -- | This type represents a monadic context function. type CxtFunM m f g = forall a h. Cxt h f a -> m (Cxt h g a) -- | This type represents a monadic signature function. type SigFunM m f g = forall a. f a -> m (g a) -- | This type represents a monadic term homomorphism. type HomM m f g = SigFunM m f (Context g) -- | This type represents a monadic signature function. It is similar to -- SigFunM but has monadic values also in the domain. type SigFunMD m f g = forall a. f (m a) -> m (g a) -- | This type represents a monadic term homomorphism. It is similar to -- HomM but has monadic values also in the domain. type HomMD m f g = SigFunMD m f (Context g) -- | Lift the given signature function to a monadic signature function. -- Note that term homomorphisms are instances of signature functions. -- Hence this function also applies to term homomorphisms. sigFunM :: Monad m => SigFun f g -> SigFunM m f g -- | Lift the give monadic signature function to a monadic term -- homomorphism. hom' :: (Functor f, Functor g, Monad m) => SigFunM m f g -> HomM m f g -- | Apply a monadic term homomorphism recursively to a term/context. appHomM :: (Traversable f, Functor g, Monad m) => HomM m f g -> CxtFunM m f g -- | Apply a monadic term homomorphism recursively to a term/context. This -- a top-down variant of appHomM. appHomM' :: (Traversable g, Monad m) => HomM m f g -> CxtFunM m f g -- | Lift the given signature function to a monadic term homomorphism. homM :: (Functor g, Monad m) => SigFunM m f g -> HomM m f g -- | This function constructs the unique monadic homomorphism from the -- initial term algebra to the given term algebra. homMD :: (Traversable f, Functor g, Monad m) => HomMD m f g -> CxtFunM m f g -- | This function applies a monadic signature function to the given -- context. appSigFunM :: (Traversable f, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies a monadic signature function to the given -- context. This is a top-down variant of appSigFunM. appSigFunM' :: (Traversable g, Monad m) => SigFunM m f g -> CxtFunM m f g -- | This function applies a signature function to the given context. appSigFunMD :: (Traversable f, Functor g, Monad m) => SigFunMD m f g -> CxtFunM m f g -- | Compose two monadic term homomorphisms. compHomM :: (Traversable g, Functor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h -- | This function composes two monadic signature functions. compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h compSigFunHomM :: (Traversable g, Functor h, Monad m) => SigFunM m g h -> HomM m f g -> HomM m f h -- | This function composes two monadic signature functions. compHomSigFunM :: Monad m => HomM m g h -> SigFunM m f g -> HomM m f h -- | This function composes two monadic signature functions. compAlgSigFunM :: Monad m => AlgM m g a -> SigFunM m f g -> AlgM m f a -- | Compose a monadic algebra with a monadic term homomorphism to get a -- new monadic algebra. compAlgM :: (Traversable g, Monad m) => AlgM m g a -> HomM m f g -> AlgM m f a -- | Compose a monadic algebra with a term homomorphism to get a new -- monadic algebra. compAlgM' :: (Traversable g, Monad m) => AlgM m g a -> Hom f g -> AlgM m f a -- | This type represents a coalgebra over a functor f and carrier -- a. type Coalg f a = a -> f a -- | Construct an anamorphism from the given coalgebra. ana :: Functor f => Coalg f a -> a -> Term f -- | Shortcut fusion variant of ana. ana' :: Functor f => Coalg f a -> a -> Term f -- | This type represents a monadic coalgebra over a functor f and -- carrier a. type CoalgM m f a = a -> m (f a) -- | Construct a monadic anamorphism from the given monadic coalgebra. anaM :: (Traversable f, Monad m) => CoalgM m f a -> a -> m (Term f) -- | This type represents an r-algebra over a functor f and -- carrier a. type RAlg f a = f (Term f, a) -> a -- | Construct a paramorphism from the given r-algebra. para :: Functor f => RAlg f a -> Term f -> a -- | This type represents a monadic r-algebra over a functor f and -- carrier a. type RAlgM m f a = f (Term f, a) -> m a -- | Construct a monadic paramorphism from the given monadic r-algebra. paraM :: (Traversable f, Monad m) => RAlgM m f a -> Term f -> m a -- | This type represents an r-coalgebra over a functor f and -- carrier a. type RCoalg f a = a -> f (Either (Term f) a) -- | Construct an apomorphism from the given r-coalgebra. apo :: Functor f => RCoalg f a -> a -> Term f -- | This type represents a monadic r-coalgebra over a functor f -- and carrier a. type RCoalgM m f a = a -> m (f (Either (Term f) a)) -- | Construct a monadic apomorphism from the given monadic r-coalgebra. apoM :: (Traversable f, Monad m) => RCoalgM m f a -> a -> m (Term f) -- | This type represents a cv-algebra over a functor f and -- carrier a. type CVAlg f a f' = f (Term f') -> a -- | Construct a histomorphism from the given cv-algebra. histo :: (Functor f, DistAnn f a f') => CVAlg f a f' -> Term f -> a -- | This type represents a monadic cv-algebra over a functor f -- and carrier a. type CVAlgM m f a f' = f (Term f') -> m a -- | Construct a monadic histomorphism from the given monadic cv-algebra. histoM :: (Traversable f, Monad m, DistAnn f a f') => CVAlgM m f a f' -> Term f -> m a -- | This type represents a cv-coalgebra over a functor f and -- carrier a. type CVCoalg f a = a -> f (Context f a) -- | Construct a futumorphism from the given cv-coalgebra. futu :: Functor f => CVCoalg f a -> a -> Term f -- | This type represents a generalised cv-coalgebra over a functor -- f and carrier a. type CVCoalg' f a = a -> Context f a -- | Construct a futumorphism from the given generalised cv-coalgebra. futu' :: Functor f => CVCoalg' f a -> a -> Term f -- | This type represents a monadic cv-coalgebra over a functor f -- and carrier a. type CVCoalgM m f a = a -> m (f (Context f a)) -- | Construct a monadic futumorphism from the given monadic cv-coalgebra. futuM :: (Traversable f, Monad m) => CVCoalgM m f a -> a -> m (Term f) -- | This module defines stateful term homomorphisms. This (slightly -- oxymoronic) notion extends per se stateless term homomorphisms with a -- state that is maintained separately by a bottom-up or top-down state -- transformation. Additionally, this module also provides combinators to -- run state transformations themselves. -- -- Like regular term homomorphisms also stateful homomorphisms (as well -- as transducers) can be lifted to annotated signatures (cf. -- Data.Comp.Annotation). -- -- The recursion schemes provided in this module are derived from tree -- automata. They allow for a higher degree of modularity and make it -- possible to apply fusion. The implementation is based on the paper -- Modular Tree Automata (Mathematics of Program Construction, -- 263-299, 2012, http://dx.doi.org/10.1007/978-3-642-31113-0_14). module Data.Comp.Automata -- | This type represents stateful term homomorphisms. Stateful term -- homomorphisms have access to a state that is provided (separately) by -- a bottom-up or top-down state transformation function (or both). type QHom f q g = forall a. (?below :: a -> q, ?above :: q) => f a -> Context g a -- | This function provides access to components of the states from -- below. below :: (?below :: a -> q, p :< q) => a -> p -- | This function provides access to components of the state from -- above above :: (?above :: q, p :< q) => p -- | This function turns a stateful homomorphism with a fully polymorphic -- state type into a (stateless) homomorphism. pureHom :: (forall q. QHom f q g) -> Hom f g -- | This function constructs a UTT from a given stateful term homomorphism -- with the state propagated by the given UTA. upTrans :: (Functor f, Functor g) => UpState f q -> QHom f q g -> UpTrans f q g -- | This function applies a given stateful term homomorphism with a state -- space propagated by the given UTA to a term. runUpHom :: (Functor f, Functor g) => UpState f q -> QHom f q g -> Term f -> Term g -- | This is a variant of runUpHom that also returns the final state -- of the run. runUpHomSt :: (Functor f, Functor g) => UpState f q -> QHom f q g -> Term f -> (q, Term g) -- | This function constructs a DTT from a given stateful term-- -- homomorphism with the state propagated by the given DTA. downTrans :: (Traversable f, Functor g) => DownState f q -> QHom f q g -> DownTrans f q g -- | This function applies a given stateful term homomorphism with a state -- space propagated by the given DTA to a term. runDownHom :: (Traversable f, Functor g) => DownState f q -> QHom f q g -> q -> Term f -> Term g -- | This combinator runs a stateful term homomorphisms with a state space -- produced both on a bottom-up and a top-down state transformation. runQHom :: (Traversable f, Functor g) => DUpState f (u, d) u -> DDownState f (u, d) d -> QHom f (u, d) g -> d -> Term f -> (u, Term g) -- | This type represents transition functions of total, deterministic -- bottom-up tree transducers (UTTs). type UpTrans f q g = forall a. f (q, a) -> (q, Context g a) -- | This is a variant of the UpTrans type that makes it easier to -- define UTTs as it avoids the explicit use of Hole to inject -- placeholders into the result. type UpTrans' f q g = forall a. f (q, Context g a) -> (q, Context g a) -- | This function turns a UTT defined using the type UpTrans' in to -- the canonical form of type UpTrans. mkUpTrans :: Functor f => UpTrans' f q g -> UpTrans f q g -- | This function runs the given UTT on the given term. runUpTrans :: (Functor f, Functor g) => UpTrans f q g -> Term f -> Term g -- | This function composes two UTTs. (see TATA, Theorem 6.4.5) compUpTrans :: (Functor f, Functor g, Functor h) => UpTrans g p h -> UpTrans f q g -> UpTrans f (q, p) h -- | This combinator composes a homomorphism followed by a UTT. compUpTransHom :: (Functor g, Functor h) => UpTrans g q h -> Hom f g -> UpTrans f q h -- | This combinator composes a UTT followed by a homomorphism. compHomUpTrans :: (Functor g, Functor h) => Hom g h -> UpTrans f q g -> UpTrans f q h -- | This combinator composes a signature function followed by a UTT. compUpTransSig :: UpTrans g q h -> SigFun f g -> UpTrans f q h -- | This combinator composes a UTT followed by a signature function. compSigUpTrans :: Functor g => SigFun g h -> UpTrans f q g -> UpTrans f q h -- | This function composes a UTT with an algebra. compAlgUpTrans :: Functor g => Alg g a -> UpTrans f q g -> Alg f (q, a) -- | This type represents transition functions of total, deterministic -- bottom-up tree acceptors (UTAs). type UpState f q = Alg f q -- | Changes the state space of the UTA using the given isomorphism. tagUpState :: Functor f => (q -> p) -> (p -> q) -> UpState f q -> UpState f p -- | This combinator runs the given UTA on a term returning the final state -- of the run. runUpState :: Functor f => UpState f q -> Term f -> q -- | This function combines the product UTA of the two given UTAs. prodUpState :: Functor f => UpState f p -> UpState f q -> UpState f (p, q) -- | This type represents transition functions of generalised deterministic -- bottom-up tree acceptors (GUTAs) which have access to an extended -- state space. type DUpState f p q = forall a. (?below :: a -> p, ?above :: p, q :< p) => f a -> q -- | This combinator turns an arbitrary UTA into a GUTA. dUpState :: Functor f => UpState f q -> DUpState f p q -- | This combinator turns a GUTA with the smallest possible state space -- into a UTA. upState :: DUpState f q q -> UpState f q -- | This combinator runs a GUTA on a term. runDUpState :: Functor f => DUpState f q q -> Term f -> q -- | This combinator constructs the product of two GUTA. prodDUpState :: (p :< c, q :< c) => DUpState f c p -> DUpState f c q -> DUpState f c (p, q) (<*>) :: (p :< c, q :< c) => DUpState f c p -> DUpState f c q -> DUpState f c (p, q) -- | This type represents transition functions of total deterministic -- top-down tree transducers (DTTs). type DownTrans f q g = forall a. q -> f (q -> a) -> Context g a -- | This is a variant of the DownTrans type that makes it easier to -- define DTTs as it avoids the explicit use of Hole to inject -- placeholders into the result. type DownTrans' f q g = forall a. q -> f (q -> Context g a) -> Context g a -- | This function turns a DTT defined using the type DownTrans' in -- to the canonical form of type DownTrans. mkDownTrans :: Functor f => DownTrans' f q g -> DownTrans f q g -- | Thsis function runs the given DTT on the given tree. runDownTrans :: (Functor f, Functor g) => DownTrans f q g -> q -> Cxt h f a -> Cxt h g a -- | This function composes two DTTs. (see W.C. Rounds /Mappings and -- grammars on trees/, Theorem 2.) compDownTrans :: (Functor f, Functor g, Functor h) => DownTrans g p h -> DownTrans f q g -> DownTrans f (q, p) h -- | This function composes a DTT after a function. compDownTransSig :: DownTrans g q h -> SigFun f g -> DownTrans f q h -- | This function composes a signature function after a DTT. compSigDownTrans :: Functor g => SigFun g h -> DownTrans f q g -> DownTrans f q h -- | This function composes a DTT after a homomorphism. compDownTransHom :: (Functor g, Functor h) => DownTrans g q h -> Hom f g -> DownTrans f q h -- | This function composes a homomorphism after a DTT. compHomDownTrans :: (Functor g, Functor h) => Hom g h -> DownTrans f q g -> DownTrans f q h -- | This type represents transition functions of total, deterministic -- top-down tree acceptors (DTAs). type DownState f q = forall a. Ord a => (q, f a) -> Map a q -- | Changes the state space of the DTA using the given isomorphism. tagDownState :: (q -> p) -> (p -> q) -> DownState f q -> DownState f p -- | This function constructs the product DTA of the given two DTAs. prodDownState :: DownState f p -> DownState f q -> DownState f (p, q) -- | This type represents transition functions of generalised deterministic -- top-down tree acceptors (GDTAs) which have access type DDownState f p q = forall i. (Ord i, ?below :: i -> p, ?above :: p, q :< p) => f i -> Map i q -- | This combinator turns an arbitrary DTA into a GDTA. dDownState :: DownState f q -> DDownState f p q -- | This combinator turns a GDTA with the smallest possible state space -- into a DTA. downState :: DDownState f q q -> DownState f q -- | This combinator constructs the product of two dependant top-down state -- transformations. prodDDownState :: (p :< c, q :< c) => DDownState f c p -> DDownState f c q -> DDownState f c (p, q) -- | This is a synonym for prodDDownState. (>*<) :: (p :< c, q :< c, Functor f) => DDownState f c p -> DDownState f c q -> DDownState f c (p, q) -- | This combinator combines a bottom-up and a top-down state -- transformations. Both state transformations can depend mutually -- recursive on each other. runDState :: Traversable f => DUpState f (u, d) u -> DDownState f (u, d) d -> d -> Term f -> u -- | left-biased union of two mappings. (&) :: Ord k => Map k v -> Map k v -> Map k v -- | This operator constructs a singleton mapping. (|->) :: k -> a -> Map k a -- | This is the empty mapping. o :: Map k a -- | This module defines macro tree transducers (MTTs). It provides -- functions to run MTTs and to compose them with top down tree -- transducers. It also defines MTTs with regular look-ahead which -- combines MTTs with bottom-up tree acceptors. module Data.Comp.MacroAutomata -- | This type represents total deterministic macro tree transducers -- (MTTs). type MacroTrans f q g = forall a. q a -> f (q (Context g a) -> a) -> Context g a -- | This is a variant of the type MacroTrans that makes it easier -- to define MTTs as it avoids the explicit use of Hole when using -- placeholders in the result. type MacroTrans' f q g = forall a. q (Context g a) -> f (q (Context g a) -> Context g a) -> Context g a -- | This function turns an MTT defined using the more convenient type -- MacroTrans' into its canonical form of type MacroTrans. mkMacroTrans :: (Functor f, Functor q) => MacroTrans' f q g -> MacroTrans f q g -- | This function defines the semantics of MTTs. It applies a given MTT to -- an input with and an initial state. runMacroTrans :: (Functor g, Functor f, Functor q) => MacroTrans f q g -> q (Cxt h g a) -> Cxt h f a -> Cxt h g a -- | This function composes a DTT followed by an MTT. The resulting MTT's -- semantics is equivalent to the function composition of the semantics -- of the original MTT and DTT. compMacroDown :: (Functor f, Functor g, Functor h, Functor p) => MacroTrans g p h -> DownTrans f q g -> MacroTrans f (p :&: q) h -- | This function composes an MTT followed by a DTT. The resulting MTT's -- semantics is equivalent to first running the original MTT and then the -- DTT. compDownMacro :: (Functor f, Functor g, Functor h, Functor q) => DownTrans g p h -> MacroTrans f q g -> MacroTrans f (q :^: p) h -- | This type is an instantiation of the MacroTrans type to a state -- space with only a single state with a single accumulation parameter -- (i.e. the state space is the identity functor). type MacroTransId f g = forall a. a -> f (Context g a -> a) -> Context g a -- | This type is a variant of the MacroTransId which is more -- convenient to work with as it avoids the explicit use of Hole -- to embed placeholders into the result. type MacroTransId' f g = forall a. Context g a -> f (Context g a -> Context g a) -> Context g a -- | This function transforms an MTT of type |MacroTransId| into the -- canonical type such that it can be run. fromMacroTransId :: Functor f => MacroTransId f g -> MacroTrans f I g -- | This function transforms an MTT of type |MacroTransId'| into the -- canonical type such that it can be run. fromMacroTransId' :: Functor f => MacroTransId' f g -> MacroTrans f I g -- | This type represents MTTs with regular look-ahead, i.e. MTTs that have -- access to information that is generated by a separate UTA. type MacroTransLA f q p g = forall a. q a -> p -> f (q (Context g a) -> a, p) -> Context g a -- | This type is a more convenient variant of MacroTransLA with -- which one can avoid using Hole explicitly when injecting -- placeholders in the result. type MacroTransLA' f q p g = forall a. q (Context g a) -> p -> f (q (Context g a) -> Context g a, p) -> Context g a -- | This function turns an MTT with regular look-ahead defined using the -- more convenient type |MacroTransLA'| into its canonical form of type -- |MacroTransLA|. mkMacroTransLA :: (Functor q, Functor f) => MacroTransLA' f q p g -> MacroTransLA f q p g -- | This function defines the semantics of MTTs with regular look-ahead. -- It applies a given MTT with regular look-ahead (including an -- accompanying bottom-up state transition function) to an input with and -- an initial state. runMacroTransLA :: (Functor g, Functor f, Functor q) => UpState f p -> MacroTransLA f q p g -> q (Term g) -> Term f -> Term g -- | This function composes an MTT with regular look-ahead followed by a -- DTT. compDownMacroLA :: (Functor f, Functor g, Functor h, Functor q1) => DownTrans g q2 h -> MacroTransLA f q1 p g -> MacroTransLA f (q1 :^: q2) p h -- | This type constructor is used to define the state space of an MTT that -- is obtained by composing an MTT followed by a DTT. data (:^:) q p a (:^:) :: q (p -> a) -> p -> :^: q p a -- | The identity Functor. newtype I a I :: a -> I a unI :: I a -> a instance Functor q => Functor (q :^: p) -- | This module provides the infrastructure to extend signatures. module Data.Comp.Sum -- | Signature containment relation for automatic injections. The left-hand -- must be an atomic signature, where as the right-hand side must have a -- list-like structure. Examples include f :<: f :+: g and -- g :<: f :+: (g :+: h), non-examples include f :+: g -- :<: f :+: (g :+: h) and f :<: (f :+: g) :+: h. class (:<:) sub sup inj :: :<: sub sup => sub a -> sup a proj :: :<: sub sup => sup a -> Maybe (sub a) -- | Formal sum of signatures (functors). data (:+:) f g e -- | Utility function to case on a functor sum, without exposing the -- internal representation of sums. caseF :: (f a -> b) -> (g a -> b) -> (f :+: g) a -> b proj2 :: (:<: g1 f, :<: g2 f) => f a -> Maybe (:+: g2 g1 a) proj3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => f a -> Maybe (:+: g3 (:+: g2 g1) a) proj4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => f a -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) a) proj5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => f a -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) a) proj6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => f a -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) a) proj7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => f a -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) a) proj8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => f a -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) a) proj9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => f a -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) a) proj10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => f a -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) a) -- | Project the outermost layer of a term to a sub signature. If the -- signature g is compound of n atomic signatures, use -- projectn instead. project :: g :<: f => Cxt h f a -> Maybe (g (Cxt h f a)) project2 :: (:<: g1 f, :<: g2 f) => Cxt h f a -> Maybe (:+: g2 g1 (Cxt h f a)) project3 :: (:<: g1 f, :<: g2 f, :<: g3 f) => Cxt h f a -> Maybe (:+: g3 (:+: g2 g1) (Cxt h f a)) project4 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => Cxt h f a -> Maybe (:+: g4 (:+: g3 (:+: g2 g1)) (Cxt h f a)) project5 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => Cxt h f a -> Maybe (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))) (Cxt h f a)) project6 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => Cxt h f a -> Maybe (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) (Cxt h f a)) project7 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => Cxt h f a -> Maybe (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) (Cxt h f a)) project8 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => Cxt h f a -> Maybe (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) (Cxt h f a)) project9 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => Cxt h f a -> Maybe (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) (Cxt h f a)) project10 :: (:<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => Cxt h f a -> Maybe (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) (Cxt h f a)) -- | Tries to coerce a termcontext to a termcontext over a -- sub-signature. If the signature g is compound of n -- atomic signatures, use deepProjectn instead. deepProject :: (Traversable g, g :<: f) => CxtFunM Maybe f g deepProject2 :: (Traversable (:+: g2 g1), :<: g1 f, :<: g2 f) => CxtFunM Maybe f (:+: g2 g1) deepProject3 :: (Traversable (:+: g3 (:+: g2 g1)), :<: g1 f, :<: g2 f, :<: g3 f) => CxtFunM Maybe f (:+: g3 (:+: g2 g1)) deepProject4 :: (Traversable (:+: g4 (:+: g3 (:+: g2 g1))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f) => CxtFunM Maybe f (:+: g4 (:+: g3 (:+: g2 g1))) deepProject5 :: (Traversable (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f) => CxtFunM Maybe f (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))) deepProject6 :: (Traversable (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f) => CxtFunM Maybe f (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))) deepProject7 :: (Traversable (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f) => CxtFunM Maybe f (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))) deepProject8 :: (Traversable (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f) => CxtFunM Maybe f (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))) deepProject9 :: (Traversable (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f) => CxtFunM Maybe f (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1)))))))) deepProject10 :: (Traversable (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))), :<: g1 f, :<: g2 f, :<: g3 f, :<: g4 f, :<: g5 f, :<: g6 f, :<: g7 f, :<: g8 f, :<: g9 f, :<: g10 f) => CxtFunM Maybe f (:+: g10 (:+: g9 (:+: g8 (:+: g7 (:+: g6 (:+: g5 (:+: g4 (:+: g3 (:+: g2 g1))))))))) inj2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 a -> g a inj3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) a -> g a inj4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) a -> g a inj5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) a -> g a inj6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) a -> g a inj7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) a -> g a inj8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) a -> g a inj9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) a -> g a inj10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) a -> g a -- | Inject a term where the outermost layer is a sub signature. If the -- signature g is compound of n atomic signatures, use -- injectn instead. inject :: g :<: f => g (Cxt h f a) -> Cxt h f a inject2 :: (:<: f1 g, :<: f2 g) => :+: f2 f1 (Cxt h g a) -> Cxt h g a inject3 :: (:<: f1 g, :<: f2 g, :<: f3 g) => :+: f3 (:+: f2 f1) (Cxt h g a) -> Cxt h g a inject4 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => :+: f4 (:+: f3 (:+: f2 f1)) (Cxt h g a) -> Cxt h g a inject5 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => :+: f5 (:+: f4 (:+: f3 (:+: f2 f1))) (Cxt h g a) -> Cxt h g a inject6 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => :+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) (Cxt h g a) -> Cxt h g a inject7 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => :+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) (Cxt h g a) -> Cxt h g a inject8 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => :+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) (Cxt h g a) -> Cxt h g a inject9 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => :+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) (Cxt h g a) -> Cxt h g a inject10 :: (:<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => :+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) (Cxt h g a) -> Cxt h g a -- | Inject a term over a sub signature to a term over larger signature. If -- the signature g is compound of n atomic signatures, -- use deepInjectn instead. deepInject :: (Functor g, g :<: f) => CxtFun g f deepInject2 :: (Functor (:+: f2 f1), :<: f1 g, :<: f2 g) => CxtFun (:+: f2 f1) g deepInject3 :: (Functor (:+: f3 (:+: f2 f1)), :<: f1 g, :<: f2 g, :<: f3 g) => CxtFun (:+: f3 (:+: f2 f1)) g deepInject4 :: (Functor (:+: f4 (:+: f3 (:+: f2 f1))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g) => CxtFun (:+: f4 (:+: f3 (:+: f2 f1))) g deepInject5 :: (Functor (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g) => CxtFun (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))) g deepInject6 :: (Functor (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g) => CxtFun (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))) g deepInject7 :: (Functor (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g) => CxtFun (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))) g deepInject8 :: (Functor (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g) => CxtFun (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))) g deepInject9 :: (Functor (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g) => CxtFun (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1)))))))) g deepInject10 :: (Functor (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))), :<: f1 g, :<: f2 g, :<: f3 g, :<: f4 g, :<: f5 g, :<: f6 g, :<: f7 g, :<: f8 g, :<: f9 g, :<: f10 g) => CxtFun (:+: f10 (:+: f9 (:+: f8 (:+: f7 (:+: f6 (:+: f5 (:+: f4 (:+: f3 (:+: f2 f1))))))))) g injectConst :: (Functor g, g :<: f) => Const g -> Cxt h f a injectConst2 :: (Functor f1, Functor f2, Functor g, f1 :<: g, f2 :<: g) => Const (f1 :+: f2) -> Cxt h g a injectConst3 :: (Functor f1, Functor f2, Functor f3, Functor g, f1 :<: g, f2 :<: g, f3 :<: g) => Const (f1 :+: (f2 :+: f3)) -> Cxt h g a projectConst :: (Functor g, g :<: f) => Cxt h f a -> Maybe (Const g) -- | This function injects a whole context into another context. injectCxt :: (Functor g, g :<: f) => Cxt h' g (Cxt h f a) -> Cxt h f a -- | This function lifts the given functor to a context. liftCxt :: (Functor f, g :<: f) => g a -> Context f a -- | This function applies the given context with hole type a to a -- family f of contexts (possibly terms) indexed by a. -- That is, each hole h is replaced by the context f h. substHoles :: (Functor f, Functor g, f :<: g) => Cxt h' f v -> (v -> Cxt h g a) -> Cxt h g a substHoles' :: (Functor f, Functor g, f :<: g, Ord v) => Cxt h' f v -> Map v (Cxt h g a) -> Cxt h g a instance [incoherent] (Eq (f a), Eq (g a)) => Eq ((:+:) f g a) instance [incoherent] (Ord (f a), Ord (g a)) => Ord ((:+:) f g a) instance [incoherent] (Show (f a), Show (g a)) => Show ((:+:) f g a) instance [incoherent] Functor f => Monad (Context f) -- | This module defines annotations on signatures. module Data.Comp.Annotation -- | This data type adds a constant product (annotation) to a signature. data (:&:) f a e (:&:) :: f e -> a -> :&: f a e -- | Formal product of signatures (functors). data (:*:) f g a (:*:) :: f a -> g a -> :*: f g a -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn s p s' | s' -> s, s' -> p injectA :: DistAnn s p s' => p -> s a -> s' a projectA :: DistAnn s p s' => s' a -> (s a, p) class RemA s s' | s -> s' remA :: RemA s s' => s a -> s' a -- | Transform a function with a domain constructed from a functor to a -- function with a domain constructed with the same functor, but with an -- additional annotation. liftA :: RemA s s' => (s' a -> t) -> s a -> t -- | Transform a function with a domain constructed from a functor to a -- function with a domain constructed with the same functor, but with an -- additional annotation. liftA' :: (DistAnn s' p s, Functor s') => (s' a -> Cxt h s' a) -> s a -> Cxt h s a -- | Strip the annotations from a term over a functor with annotations. stripA :: (RemA g f, Functor g) => CxtFun g f -- | Lift a term homomorphism over signatures f and g to -- a term homomorphism over the same signatures, but extended with -- annotations. propAnn :: (DistAnn f p f', DistAnn g p g', Functor g) => Hom f g -> Hom f' g' -- | Lift a stateful term homomorphism over signatures f and -- g to a stateful term homomorphism over the same signatures, -- but extended with annotations. propAnnQ :: (DistAnn f p f', DistAnn g p g', Functor g) => QHom f q g -> QHom f' q g' -- | Lift a bottom-up tree transducer over signatures f and -- g to a bottom-up tree transducer over the same signatures, -- but extended with annotations. propAnnUp :: (DistAnn f p f', DistAnn g p g', Functor g) => UpTrans f q g -> UpTrans f' q g' -- | Lift a top-down tree transducer over signatures f and -- g to a top-down tree transducer over the same signatures, but -- extended with annotations. propAnnDown :: (DistAnn f p f', DistAnn g p g', Functor g) => DownTrans f q g -> DownTrans f' q g' -- | Lift a macro tree transducer over signatures f and g -- to a macro tree transducer over the same signatures, but extended with -- annotations. propAnnMacro :: (Functor f, Functor q, DistAnn f p f', DistAnn g p g', Functor g) => MacroTrans f q g -> MacroTrans f' q g' -- | Lift a macro tree transducer with regular look-ahead over signatures -- f and g to a macro tree transducer with regular -- look-ahead over the same signatures, but extended with annotations. propAnnMacroLA :: (Functor f, Functor q, DistAnn f p f', DistAnn g p g', Functor g) => MacroTransLA f q p g -> MacroTransLA f' q p g' -- | Lift a monadic term homomorphism over signatures f and -- g to a monadic term homomorphism over the same signatures, -- but extended with annotations. propAnnM :: (DistAnn f p f', DistAnn g p g', Functor g, Monad m) => HomM m f g -> HomM m f' g' -- | Annotate each node of a term with a constant value. ann :: (DistAnn f p g, Functor f) => p -> CxtFun f g -- | This function adds unique annotations to a term/context. Each node in -- the term/context is annotated with its path from the root, which is -- represented as an integer list. It is implemented as a DTT. pathAnn :: Traversable g => CxtFun g (g :&: [Int]) -- | This function is similar to project but applies to signatures -- with an annotation which is then ignored. project' :: (RemA f g, f :<: f1) => Cxt h f1 a -> Maybe (g (Cxt h f1 a)) -- | This module defines equality for signatures, which lifts to equality -- for terms and contexts. module Data.Comp.Equality -- | Signature equality. An instance EqF f gives rise to an -- instance Eq (Term f). class EqF f eqF :: (EqF f, Eq a) => f a -> f a -> Bool -- | This function implements equality of values of type f a -- modulo the equality of a itself. If two functorial values are -- equal in this sense, eqMod returns a Just value -- containing a list of pairs consisting of corresponding components of -- the two functorial values. eqMod :: (EqF f, Functor f, Foldable f) => f a -> f b -> Maybe [(a, b)] instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0, Eq g0, Eq h0, Eq i0) => EqF ((,,,,,,,,,) a0 b0 c0 d0 e0 f0 g0 h0 i0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0, Eq g0, Eq h0) => EqF ((,,,,,,,,) a0 b0 c0 d0 e0 f0 g0 h0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0, Eq g0) => EqF ((,,,,,,,) a0 b0 c0 d0 e0 f0 g0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0, Eq f0) => EqF ((,,,,,,) a0 b0 c0 d0 e0 f0) instance (Eq a0, Eq b0, Eq c0, Eq d0, Eq e0) => EqF ((,,,,,) a0 b0 c0 d0 e0) instance (Eq a0, Eq b0, Eq c0, Eq d0) => EqF ((,,,,) a0 b0 c0 d0) instance (Eq a0, Eq b0, Eq c0) => EqF ((,,,) a0 b0 c0) instance (Eq a0, Eq b0) => EqF ((,,) a0 b0) instance Eq a0 => EqF ((,) a0) instance EqF [] instance EqF Maybe instance (EqF f, EqF g) => EqF (f :+: g) instance EqF f => EqF (Cxt h f) instance (EqF f, Eq a) => Eq (Cxt h f a) -- | This module defines type generic functions and recursive schemes along -- the lines of the Uniplate library. module Data.Comp.Generic -- | This function returns the subterm of a given term at the position -- specified by the given path or Nothing if the input term has -- no such subterm getSubterm :: (Functor g, Foldable g) => [Int] -> Term g -> Maybe (Term g) -- | This function returns the subterm of a given term at the position -- specified by the given path. This function is a variant of -- getSubterm which fails if there is no subterm at the given -- position. getSubterm' :: (Functor g, Foldable g) => [Int] -> Term g -> Term g -- | This function returns a list of all subterms of the given term. This -- function is similar to Uniplate's universe function. subterms :: Foldable f => Term f -> [Term f] -- | This function returns a list of all subterms of the given term that -- are constructed from a particular functor. subterms' :: (Foldable f, g :<: f) => Term f -> [g (Term f)] -- | This function transforms every subterm according to the given function -- in a bottom-up manner. This function is similar to Uniplate's -- transform function. transform :: Functor f => (Term f -> Term f) -> Term f -> Term f transform' :: Functor f => (Term f -> Maybe (Term f)) -> Term f -> Term f -- | Monadic version of transform. transformM :: (Traversable f, Monad m) => (Term f -> m (Term f)) -> Term f -> m (Term f) query :: Foldable f => (Term f -> r) -> (r -> r -> r) -> Term f -> r gsize :: Foldable f => Term f -> Int -- | This function computes the generic size of the given term, i.e. the -- its number of subterm occurrences. size :: Foldable f => Cxt h f a -> Int -- | This function computes the generic height of the given term. height :: Foldable f => Cxt h f a -> Int -- | This modules defines terms & contexts with thunks, with deferred -- monadic computations. module Data.Comp.Thunk -- | This type represents terms with thunks. type TermT m f = Term (m :+: f) -- | This type represents contexts with thunks. type CxtT m h f a = Cxt h (m :+: f) a -- | This function turns a monadic computation into a thunk. thunk :: m :<: f => m (Cxt h f a) -> Cxt h f a -- | This function evaluates all thunks until a non-thunk node is found. whnf :: Monad m => TermT m f -> m (f (TermT m f)) whnf' :: Monad m => TermT m f -> m (TermT m f) -- | This function first evaluates the argument term into whnf via -- whnf and then projects the top-level signature to the desired -- subsignature. Failure to do the projection is signalled as a failure -- in the monad. whnfPr :: (Monad m, g :<: f) => TermT m f -> m (g (TermT m f)) -- | This function evaluates all thunks. nf :: (Monad m, Traversable f) => TermT m f -> m (Term f) -- | This function evaluates all thunks while simultaneously projecting the -- term to a smaller signature. Failure to do the projection is signalled -- as a failure in the monad as in whnfPr. nfPr :: (Monad m, Traversable g, g :<: f) => TermT m f -> m (Term g) -- | This function inspects the topmost non-thunk node (using whnf) -- according to the given function. eval :: Monad m => (f (TermT m f) -> TermT m f) -> TermT m f -> TermT m f -- | This function inspects the topmost non-thunk nodes of two terms (using -- whnf) according to the given function. eval2 :: Monad m => (f (TermT m f) -> f (TermT m f) -> TermT m f) -> TermT m f -> TermT m f -> TermT m f -- | This function inspects a term (using nf) according to the given -- function. deepEval :: (Traversable f, Monad m) => (Term f -> TermT m f) -> TermT m f -> TermT m f -- | This function inspects two terms (using nf) according to the -- given function. deepEval2 :: (Monad m, Traversable f) => (Term f -> Term f -> TermT m f) -> TermT m f -> TermT m f -> TermT m f -- | Variant of eval with flipped argument positions (#>) :: Monad m => TermT m f -> (f (TermT m f) -> TermT m f) -> TermT m f -- | Variant of deepEval with flipped argument positions (#>>) :: (Monad m, Traversable f) => TermT m f -> (Term f -> TermT m f) -> TermT m f -- | This type represents algebras which have terms with thunks as carrier. type AlgT m f g = Alg f (TermT m g) -- | This combinator runs a catamorphism on a term with thunks. cataT :: (Traversable f, Monad m) => Alg f a -> TermT m f -> m a -- | This combinator runs a monadic catamorphism on a term with thunks cataTM :: (Traversable f, Monad m) => AlgM m f a -> TermT m f -> m a -- | This function decides equality of terms with thunks. eqT :: (EqF f, Foldable f, Functor f, Monad m) => TermT m f -> TermT m f -> m Bool -- | This combinator makes the evaluation of the given functor application -- strict by evaluating all thunks of immediate subterms. strict :: (f :<: g, Traversable f, Monad m) => f (TermT m g) -> TermT m g -- | This combinator is a variant of strict that only makes a subset -- of the arguments of a functor application strict. The first argument -- of this combinator specifies which positions are supposed to be -- strict. strictAt :: (f :<: g, Traversable f, Monad m) => Pos f -> f (TermT m g) -> TermT m g -- | This module contains functionality for automatically deriving -- boilerplate code using Template Haskell. Examples include instances of -- Functor, Foldable, and Traversable. module Data.Comp.Derive -- | Helper function for generating a list of instances for a list of named -- signatures. For example, in order to derive instances Functor -- and ShowF for a signature Exp, use derive as follows -- (requires Template Haskell): -- --
-- $(derive [makeFunctor, makeShowF] [''Exp]) --derive :: [Name -> Q [Dec]] -> [Name] -> Q [Dec] -- | Signature printing. An instance ShowF f gives rise to an -- instance Show (Term f). class ShowF f showF :: ShowF f => f String -> String -- | Derive an instance of ShowF for a type constructor of any -- first-order kind taking at least one argument. makeShowF :: Name -> Q [Dec] -- | Signature equality. An instance EqF f gives rise to an -- instance Eq (Term f). class EqF f eqF :: (EqF f, Eq a) => f a -> f a -> Bool -- | Derive an instance of EqF for a type constructor of any -- first-order kind taking at least one argument. makeEqF :: Name -> Q [Dec] -- | Signature ordering. An instance OrdF f gives rise to an -- instance Ord (Term f). class EqF f => OrdF f compareF :: (OrdF f, Ord a) => f a -> f a -> Ordering -- | Derive an instance of OrdF for a type constructor of any -- first-order kind taking at least one argument. makeOrdF :: Name -> Q [Dec] -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Maybe and IO -- satisfy these laws. class Functor (f :: * -> *) -- | Derive an instance of Functor for a type constructor of any -- first-order kind taking at least one argument. makeFunctor :: Name -> Q [Dec] -- | Data structures that can be folded. -- -- Minimal complete definition: foldMap or foldr. -- -- For example, given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l --class Foldable (t :: * -> *) -- | Derive an instance of Foldable for a type constructor of any -- first-order kind taking at least one argument. makeFoldable :: Name -> Q [Dec] -- | Functors representing data structures that can be traversed from left -- to right. -- -- Minimal complete definition: traverse or sequenceA. -- -- Instances are similar to Functor, e.g. given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Traversable Tree where -- traverse f Empty = pure Empty -- traverse f (Leaf x) = Leaf <$> f x -- traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r ---- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- --