-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Combinators for unorthodox structure composition -- @package composition-extra @version 0.0.0.1 module Control.Monad.Composition (>>==) :: Monad m => m b -> (a -> b -> m c) -> a -> m c (>>===) :: Monad m => m c -> (a -> b -> c -> m d) -> a -> b -> m d (>>====) :: Monad m => m d -> (a -> b -> c -> d -> m e) -> a -> b -> c -> m e (>>=====) :: Monad m => m e -> (a -> b -> c -> d -> e -> m f) -> a -> b -> c -> d -> m f (>>======) :: Monad m => m f -> (a -> b -> c -> d -> e -> f -> m g) -> a -> b -> c -> d -> e -> m g (==<<) :: Monad m => (a -> b -> m c) -> m b -> a -> m c (===<<) :: Monad m => (a -> b -> c -> m d) -> m c -> a -> b -> m d (====<<) :: Monad m => (a -> b -> c -> d -> m e) -> m d -> a -> b -> c -> m e (=====<<) :: Monad m => (a -> b -> c -> d -> e -> m f) -> m e -> a -> b -> c -> d -> m f (======<<) :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> m f -> a -> b -> c -> d -> e -> m g module Data.Function.Contravariant.Composition (-.) :: (a -> b) -> (b -> c) -> a -> c (-.:) :: (b -> c) -> (a -> c -> d) -> a -> b -> d (-.::) :: (c -> d) -> (a -> b -> d -> e) -> a -> b -> c -> e (-.:::) :: (d -> e) -> (a -> b -> c -> e -> f) -> a -> b -> c -> d -> f (-.::::) :: (e -> f) -> (a -> b -> c -> d -> f -> g) -> a -> b -> c -> d -> e -> g module Data.Functor.Contravariant.Composition (<-$>) :: Contravariant f => (a -> b) -> f b -> f a (<-$$>) :: (Contravariant f0, Contravariant f1) => (a -> b) -> f1 (f0 a) -> f1 (f0 b) (<-$$$>) :: (Contravariant f0, Contravariant f1, Contravariant f2) => (a -> b) -> f2 (f1 (f0 b)) -> f2 (f1 (f0 a)) (<-$$$$>) :: (Contravariant f0, Contravariant f1, Contravariant f2, Contravariant f3) => (a -> b) -> f3 (f2 (f1 (f0 a))) -> f3 (f2 (f1 (f0 b))) (<-$$$$$>) :: (Contravariant f0, Contravariant f1, Contravariant f2, Contravariant f3, Contravariant f4) => (a -> b) -> f4 (f3 (f2 (f1 (f0 b)))) -> f4 (f3 (f2 (f1 (f0 a)))) module Data.Functor.Composition (<$$>) :: (Functor f0, Functor f1) => (a -> b) -> f1 (f0 a) -> f1 (f0 b) (<$$$>) :: (Functor f0, Functor f1, Functor f2) => (a -> b) -> f2 (f1 (f0 a)) -> f2 (f1 (f0 b)) (<$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (a -> b) -> f3 (f2 (f1 (f0 a))) -> f3 (f2 (f1 (f0 b))) (<$$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => (a -> b) -> f4 (f3 (f2 (f1 (f0 a)))) -> f4 (f3 (f2 (f1 (f0 b))))