-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Combinators for unorthodox structure composition -- -- Increase the unreadability of your code through operators @package composition-extra @version 2.1.0 module Control.Monad.Syntax.Five (=====<<) :: Monad m => (a -> b -> c -> d -> e -> m f) -> m a -> b -> c -> d -> e -> m f infixr 1 =====<< (=.===<<) :: Monad m => (a -> b -> c -> d -> e -> m f) -> m b -> a -> c -> d -> e -> m f infixr 1 =.===<< (==.==<<) :: Monad m => (a -> b -> c -> d -> e -> m f) -> m c -> a -> b -> d -> e -> m f infixr 1 ==.==<< (===.=<<) :: Monad m => (a -> b -> c -> d -> e -> m f) -> m d -> a -> b -> c -> e -> m f infixr 1 ===.=<< (====.<<) :: Monad m => (a -> b -> c -> d -> e -> m f) -> m e -> a -> b -> c -> d -> m f infixr 1 ====.<< module Control.Monad.Syntax.Four (====<<) :: Monad m => (a -> b -> c -> d -> m e) -> m a -> b -> c -> d -> m e infixr 1 ====<< (=.==<<) :: Monad m => (a -> b -> c -> d -> m e) -> m b -> a -> c -> d -> m e infixr 1 =.==<< (==.=<<) :: Monad m => (a -> b -> c -> d -> m e) -> m c -> a -> b -> d -> m e infixr 1 ==.=<< (===.<<) :: Monad m => (a -> b -> c -> d -> m e) -> m d -> a -> b -> c -> m e infixr 1 ===.<< module Control.Monad.Syntax.Six (======<<) :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> m a -> b -> c -> d -> e -> f -> m g infixr 1 ======<< (=.====<<) :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> m b -> a -> c -> d -> e -> f -> m g infixr 1 =.====<< (==.===<<) :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> m c -> a -> b -> d -> e -> f -> m g infixr 1 ==.===<< (===.==<<) :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> m d -> a -> b -> c -> e -> f -> m g infixr 1 ===.==<< (====.=<<) :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> m e -> a -> b -> c -> d -> f -> m g infixr 1 ====.=<< (=====.<<) :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> m f -> a -> b -> c -> d -> e -> m g infixr 1 =====.<< module Control.Monad.Syntax.Three (===<<) :: Monad m => (a -> b -> c -> m d) -> m a -> b -> c -> m d infixl 1 ===<< (=.=<<) :: Monad m => (a -> b -> c -> m d) -> m b -> a -> c -> m d infixl 1 =.=<< (==.<<) :: Monad m => (a -> b -> c -> m d) -> m c -> a -> b -> m d infixl 1 ==.<< module Control.Monad.Syntax.Two (==<<) :: Monad m => (a -> b -> m c) -> m a -> b -> m c infixl 1 ==<< (=.<<) :: Monad m => (a -> b -> m c) -> m b -> a -> m c infixl 1 =.<< module Control.Monad.Syntax (>>==) :: Monad m => m b -> (a -> b -> m c) -> a -> m c infixr 2 >>== (>>===) :: Monad m => m c -> (a -> b -> c -> m d) -> a -> b -> m d infixr 2 >>=== (>>====) :: Monad m => m d -> (a -> b -> c -> d -> m e) -> a -> b -> c -> m e infixr 2 >>==== (>>=====) :: Monad m => m e -> (a -> b -> c -> d -> e -> m f) -> a -> b -> c -> d -> m f infixr 2 >>===== (>>======) :: Monad m => m f -> (a -> b -> c -> d -> e -> f -> m g) -> a -> b -> c -> d -> e -> m g infixr 2 >>====== module Data.Function.Contravariant.Syntax (-.) :: (a -> b) -> (b -> c) -> a -> c infixr 8 -. (-.:) :: (b -> c) -> (a -> c -> d) -> a -> b -> d infixr 8 -.: (-.*) :: (b -> c) -> (a -> c -> d) -> a -> b -> d infixr 8 -.* (-.:.) :: (c -> d) -> (a -> b -> d -> e) -> a -> b -> c -> e infixr 8 -.:. (-.**) :: (c -> d) -> (a -> b -> d -> e) -> a -> b -> c -> e infixr 8 -.** (-.::) :: (d -> e) -> (a -> b -> c -> e -> f) -> a -> b -> c -> d -> f infixr 8 -.:: (-.***) :: (d -> e) -> (a -> b -> c -> e -> f) -> a -> b -> c -> d -> f infixr 8 -.*** (-.::.) :: (e -> f) -> (a -> b -> c -> d -> f -> g) -> a -> b -> c -> d -> e -> g infixr 8 -.::. (-.****) :: (e -> f) -> (a -> b -> c -> d -> f -> g) -> a -> b -> c -> d -> e -> g infixr 8 -.**** (-.:::) :: (f -> g) -> (a -> b -> c -> d -> e -> g -> h) -> a -> b -> c -> d -> e -> f -> h infixr 8 -.::: (-.*****) :: (f -> g) -> (a -> b -> c -> d -> e -> g -> h) -> a -> b -> c -> d -> e -> f -> h infixr 8 -.***** (-.:::.) :: (g -> h) -> (a -> b -> c -> d -> e -> f -> h -> i) -> a -> b -> c -> d -> e -> f -> g -> i infixr 8 -.:::. (-.******) :: (g -> h) -> (a -> b -> c -> d -> e -> f -> h -> i) -> a -> b -> c -> d -> e -> f -> g -> i infixr 8 -.****** (-.::::) :: (h -> i) -> (a -> b -> c -> d -> e -> f -> g -> i -> j) -> a -> b -> c -> d -> e -> f -> g -> h -> j infixr 8 -.:::: (-.*******) :: (h -> i) -> (a -> b -> c -> d -> e -> f -> g -> i -> j) -> a -> b -> c -> d -> e -> f -> g -> h -> j infixr 8 -.******* (-.::::.) :: (i -> j) -> (a -> b -> c -> d -> e -> f -> g -> h -> j -> k) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> k infixr 8 -.::::. (-.********) :: (i -> j) -> (a -> b -> c -> d -> e -> f -> g -> h -> j -> k) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> k infixr 8 -.******** module Data.Function.Flip (<->) :: (a -> b -> c) -> b -> a -> c infixl 8 <-> flip3 :: (a -> b -> c -> d) -> c -> b -> a -> d (<-->) :: (a -> b -> c -> d) -> c -> b -> a -> d infixl 8 <--> flip4 :: (a -> b -> c -> d -> e) -> d -> b -> c -> a -> e (<--->) :: (a -> b -> c -> d -> e) -> d -> b -> c -> a -> e infixl 8 <---> flip5 :: (a -> b -> c -> d -> e -> f) -> e -> b -> c -> d -> a -> f (<---->) :: (a -> b -> c -> d -> e -> f) -> e -> b -> c -> d -> a -> f infixl 8 <----> -- | Bit-shift style argument re-arrangement module Data.Function.Slip slipr :: (a -> b -> c -> d) -> b -> c -> a -> d (<~>>) :: (a -> b -> c -> d) -> b -> c -> a -> d infixl 8 <~>> slipl :: (a -> b -> c -> d) -> c -> a -> b -> d (<<~>) :: (a -> b -> c -> d) -> c -> a -> b -> d infixl 8 <<~> slipr4 :: (a -> b -> c -> d -> e) -> b -> c -> d -> a -> e (<~~>>) :: (a -> b -> c -> d -> e) -> b -> c -> d -> a -> e infixl 8 <~~>> slipl4 :: (a -> b -> c -> d -> e) -> d -> a -> b -> c -> e (<<~~>) :: (a -> b -> c -> d -> e) -> d -> a -> b -> c -> e infixl 8 <<~~> slipr5 :: (a -> b -> c -> d -> e -> f) -> b -> c -> d -> e -> a -> f (<~~~>>) :: (a -> b -> c -> d -> e -> f) -> b -> c -> d -> e -> a -> f infixl 8 <~~~>> slipl5 :: (a -> b -> c -> d -> e -> f) -> e -> a -> b -> c -> d -> f (<<~~~>) :: (a -> b -> c -> d -> e -> f) -> e -> a -> b -> c -> d -> f infixl 8 <<~~~> module Data.Function.Apply (-$) :: (a -> b -> c) -> b -> a -> c infixl 8 -$ (--$) :: (a -> b -> c -> d) -> c -> a -> b -> d infixl 8 --$ (---$) :: (a -> b -> c -> d -> e) -> d -> a -> b -> c -> e infixl 8 ---$ (----$) :: (a -> b -> c -> d -> e -> f) -> e -> a -> b -> c -> d -> f infixl 8 ----$ module Data.Function.Twist twist :: (a -> b -> c -> d -> e) -> c -> d -> a -> b -> e (<<~~>>) :: (a -> b -> c -> d -> e) -> c -> d -> a -> b -> e infixl 8 <<~~>> twist5r :: (a -> b -> c -> d -> e -> f) -> c -> d -> e -> a -> b -> f (<<~~>>>) :: (a -> b -> c -> d -> e -> f) -> c -> d -> e -> a -> b -> f infixl 8 <<~~>>> twist5l :: (a -> b -> c -> d -> e -> f) -> d -> e -> a -> b -> c -> f (<<<~~>>) :: (a -> b -> c -> d -> e -> f) -> d -> e -> a -> b -> c -> f infixl 8 <<<~~>> twist5 :: (a -> b -> c -> d -> e -> f) -> d -> e -> c -> a -> b -> f (<<<~~>>>) :: (a -> b -> c -> d -> e -> f) -> d -> e -> c -> a -> b -> f infixl 8 <<<~~>>> twist6 :: (a -> b -> c -> d -> e -> f -> g) -> d -> e -> f -> a -> b -> c -> g (<<~~~>>) :: (a -> b -> c -> d -> e -> f -> g) -> d -> e -> f -> a -> b -> c -> g infixl 8 <<~~~>> twist7r :: (a -> b -> c -> d -> e -> f -> g -> h) -> d -> e -> f -> g -> a -> b -> c -> h (<<~~~>>>) :: (a -> b -> c -> d -> e -> f -> g -> h) -> d -> e -> f -> g -> a -> b -> c -> h infixl 8 <<~~~>>> twist7l :: (a -> b -> c -> d -> e -> f -> g -> h) -> e -> f -> g -> a -> b -> c -> d -> h (<<<~~~>>) :: (a -> b -> c -> d -> e -> f -> g -> h) -> e -> f -> g -> a -> b -> c -> d -> h infixl 8 <<<~~~>> twist7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> e -> f -> g -> d -> a -> b -> c -> h (<<<~~~>>>) :: (a -> b -> c -> d -> e -> f -> g -> h) -> e -> f -> g -> d -> a -> b -> c -> h infixl 8 <<<~~~>>> module Data.Function.Syntax (*.) :: (a -> c -> d) -> (b -> c) -> a -> b -> d infixl 8 *. (**.) :: (a -> b -> d -> e) -> (c -> d) -> a -> b -> c -> e infixl 8 **. (***.) :: (a -> b -> c -> e -> f) -> (d -> e) -> a -> b -> c -> d -> f infixl 8 ***. (****.) :: (a -> b -> c -> d -> f -> g) -> (e -> f) -> a -> b -> c -> d -> e -> g infixl 8 ****. (*****.) :: (a -> b -> c -> d -> e -> g -> h) -> (f -> g) -> a -> b -> c -> d -> e -> f -> h infixl 8 *****. (******.) :: (a -> b -> c -> d -> e -> f -> h -> i) -> (g -> h) -> a -> b -> c -> d -> e -> f -> g -> i infixl 8 ******. (*******.) :: (a -> b -> c -> d -> e -> f -> g -> i -> j) -> (h -> i) -> a -> b -> c -> d -> e -> f -> g -> h -> j infixl 8 *******. (********.) :: (a -> b -> c -> d -> e -> f -> g -> h -> j -> k) -> (i -> j) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> k infixl 8 ********. module Data.Functor.Syntax (<$$>) :: (Functor f0, Functor f1) => (a -> b) -> f1 (f0 a) -> f1 (f0 b) infixr 8 <$$> (<$$$>) :: (Functor f0, Functor f1, Functor f2) => (a -> b) -> f2 (f1 (f0 a)) -> f2 (f1 (f0 b)) infixr 8 <$$$> (<$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (a -> b) -> f3 (f2 (f1 (f0 a))) -> f3 (f2 (f1 (f0 b))) infixr 8 <$$$$> (<$$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => (a -> b) -> f4 (f3 (f2 (f1 (f0 a)))) -> f4 (f3 (f2 (f1 (f0 b)))) infixr 8 <$$$$$> (<&&>) :: (Functor f0, Functor f1) => f1 (f0 a) -> (a -> b) -> f1 (f0 b) infixl 1 <&&> (<&&&>) :: (Functor f0, Functor f1, Functor f2) => f2 (f1 (f0 a)) -> (a -> b) -> f2 (f1 (f0 b)) infixl 1 <&&&> (<&&&&>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => f3 (f2 (f1 (f0 a))) -> (a -> b) -> f3 (f2 (f1 (f0 b))) infixl 1 <&&&&> (<&&&&&>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => f4 (f3 (f2 (f1 (f0 a)))) -> (a -> b) -> f4 (f3 (f2 (f1 (f0 b)))) infixl 1 <&&&&&> (<$~>) :: Functor f0 => f0 (a -> b) -> a -> f0 b infixl 8 <$~> (<~$>) :: Functor f0 => (a -> b -> c) -> f0 b -> f0 (a -> c) infixr 8 <~$> (<$~~>) :: Functor f0 => f0 (a -> b -> c) -> b -> f0 (a -> c) infixl 8 <$~~> (<~~$>) :: Functor f0 => (a -> b -> c -> d) -> f0 c -> f0 (a -> b -> d) infixr 8 <~~$> (<$~~~>) :: Functor f0 => f0 (a -> b -> c -> d) -> c -> f0 (a -> b -> d) infixl 8 <$~~~> (<~~~$>) :: Functor f0 => (a -> b -> c -> d -> e) -> f0 d -> f0 (a -> b -> c -> e) infixr 8 <~~~$> (<$$~>) :: (Functor f0, Functor f1) => f1 (f0 (a -> b)) -> a -> f1 (f0 b) infixl 8 <$$~> (<~$$>) :: (Functor f0, Functor f1) => (a -> b -> c) -> f1 (f0 b) -> f1 (f0 (a -> c)) infixr 8 <~$$> (<$$~~>) :: (Functor f0, Functor f1) => f1 (f0 (a -> b -> c)) -> b -> f1 (f0 (a -> c)) infixl 8 <$$~~> (<~~$$>) :: (Functor f0, Functor f1) => (a -> b -> c -> d) -> f1 (f0 c) -> f1 (f0 (a -> b -> d)) infixr 8 <~~$$> (<$$~~~>) :: (Functor f0, Functor f1) => f1 (f0 (a -> b -> c -> d)) -> c -> f1 (f0 (a -> b -> d)) infixl 8 <$$~~~> (<~~~$$>) :: (Functor f0, Functor f1) => (a -> b -> c -> d -> e) -> f1 (f0 d) -> f1 (f0 (a -> b -> c -> e)) infixr 8 <~~~$$> (<$$$~>) :: (Functor f0, Functor f1, Functor f2) => f2 (f1 (f0 (a -> b))) -> a -> f2 (f1 (f0 b)) infixl 8 <$$$~> (<~$$$>) :: (Functor f0, Functor f1, Functor f2) => (a -> b -> c) -> f2 (f1 (f0 b)) -> f2 (f1 (f0 (a -> c))) infixr 8 <~$$$> (<$$$~~>) :: (Functor f0, Functor f1, Functor f2) => f2 (f1 (f0 (a -> b -> c))) -> b -> f2 (f1 (f0 (a -> c))) infixl 8 <$$$~~> (<~~$$$>) :: (Functor f0, Functor f1, Functor f2) => (a -> b -> c -> d) -> f2 (f1 (f0 c)) -> f2 (f1 (f0 (a -> b -> d))) infixr 8 <~~$$$> (<$$$~~~>) :: (Functor f0, Functor f1, Functor f2) => f2 (f1 (f0 (a -> b -> c -> d))) -> c -> f2 (f1 (f0 (a -> b -> d))) infixl 8 <$$$~~~> (<~~~$$$>) :: (Functor f0, Functor f1, Functor f2) => (a -> b -> c -> d -> e) -> f2 (f1 (f0 d)) -> f2 (f1 (f0 (a -> b -> c -> e))) infixr 8 <~~~$$$> (<$$$$~>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => f3 (f2 (f1 (f0 (a -> b)))) -> a -> f3 (f2 (f1 (f0 b))) infixl 8 <$$$$~> (<~$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (a -> b -> c) -> f3 (f2 (f1 (f0 b))) -> f3 (f2 (f1 (f0 (a -> c)))) infixr 8 <~$$$$> (<$$$$~~>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => f3 (f2 (f1 (f0 (a -> b -> c)))) -> b -> f3 (f2 (f1 (f0 (a -> c)))) infixl 8 <$$$$~~> (<~~$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (a -> b -> c -> d) -> f3 (f2 (f1 (f0 c))) -> f3 (f2 (f1 (f0 (a -> b -> d)))) infixr 8 <~~$$$$> (<$$$$~~~>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => f3 (f2 (f1 (f0 (a -> b -> c -> d)))) -> c -> f3 (f2 (f1 (f0 (a -> b -> d)))) infixl 8 <$$$$~~~> (<~~~$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (a -> b -> c -> d -> e) -> f3 (f2 (f1 (f0 d))) -> f3 (f2 (f1 (f0 (a -> b -> c -> e)))) infixr 8 <~~~$$$$> (<$$$$$~>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => f4 (f3 (f2 (f1 (f0 (a -> b))))) -> a -> f4 (f3 (f2 (f1 (f0 b)))) infixl 8 <$$$$$~> (<~$$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => (a -> b -> c) -> f4 (f3 (f2 (f1 (f0 b)))) -> f4 (f3 (f2 (f1 (f0 (a -> c))))) infixr 8 <~$$$$$> (<$$$$$~~>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => f4 (f3 (f2 (f1 (f0 (a -> b -> c))))) -> b -> f4 (f3 (f2 (f1 (f0 (a -> c))))) infixl 8 <$$$$$~~> (<~~$$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => (a -> b -> c -> d) -> f4 (f3 (f2 (f1 (f0 c)))) -> f4 (f3 (f2 (f1 (f0 (a -> b -> d))))) infixr 8 <~~$$$$$> (<$$$$$~~~>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => f4 (f3 (f2 (f1 (f0 (a -> b -> c -> d))))) -> c -> f4 (f3 (f2 (f1 (f0 (a -> b -> d))))) infixl 8 <$$$$$~~~> (<~~~$$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3, Functor f4) => (a -> b -> c -> d -> e) -> f4 (f3 (f2 (f1 (f0 d)))) -> f4 (f3 (f2 (f1 (f0 (a -> b -> c -> e))))) infixr 8 <~~~$$$$$> (<.$>) :: Functor f0 => (b -> c) -> f0 (a -> b) -> f0 (a -> c) infixr 8 <.$> (<.*$>) :: Functor f0 => (c -> d) -> f0 (a -> b -> c) -> f0 (a -> b -> d) infixr 8 <.*$> (<*.$>) :: Functor f0 => (a -> c -> d) -> f0 (b -> c) -> f0 (a -> b -> d) infixr 8 <*.$> (<.**$>) :: Functor f0 => (d -> e) -> f0 (a -> b -> c -> d) -> f0 (a -> b -> c -> e) infixr 8 <.**$> (<.$$>) :: (Functor f0, Functor f1) => (b -> c) -> f1 (f0 (a -> b)) -> f1 (f0 (a -> c)) infixr 8 <.$$> (<.*$$>) :: (Functor f0, Functor f1) => (c -> d) -> f1 (f0 (a -> b -> c)) -> f1 (f0 (a -> b -> d)) infixr 8 <.*$$> (<.**$$>) :: (Functor f0, Functor f1) => (d -> e) -> f1 (f0 (a -> b -> c -> d)) -> f1 (f0 (a -> b -> c -> e)) infixr 8 <.**$$> (<.$$$>) :: (Functor f0, Functor f1, Functor f2) => (b -> c) -> f2 (f1 (f0 (a -> b))) -> f2 (f1 (f0 (a -> c))) infixr 8 <.$$$> (<.*$$$>) :: (Functor f0, Functor f1, Functor f2) => (c -> d) -> f2 (f1 (f0 (a -> b -> c))) -> f2 (f1 (f0 (a -> b -> d))) infixr 8 <.*$$$> (<.**$$$>) :: (Functor f0, Functor f1, Functor f2) => (d -> e) -> f2 (f1 (f0 (a -> b -> c -> d))) -> f2 (f1 (f0 (a -> b -> c -> e))) infixr 8 <.**$$$> (<.$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (b -> c) -> f3 (f2 (f1 (f0 (a -> b)))) -> f3 (f2 (f1 (f0 (a -> c)))) infixr 8 <.$$$$> (<.*$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (c -> d) -> f3 (f2 (f1 (f0 (a -> b -> c)))) -> f3 (f2 (f1 (f0 (a -> b -> d)))) infixr 8 <.*$$$$> (<.**$$$$>) :: (Functor f0, Functor f1, Functor f2, Functor f3) => (d -> e) -> f3 (f2 (f1 (f0 (a -> b -> c -> d)))) -> f3 (f2 (f1 (f0 (a -> b -> c -> e)))) infixr 8 <.**$$$$>