{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE Trustworthy #-} module Config.Parser (parse) where import Control.Applicative import Control.Monad import Data.ByteString (ByteString) import Data.Text (Text) import qualified Data.ByteString.Char8 as B8 import Config.Value (Section(..), Value(..)) import Config.Lexer (scanTokens) import Config.Tokens (Located(..), Position(..), Token, layoutPass) import qualified Config.Tokens as T import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts import Control.Applicative(Applicative(..)) -- parser produced by Happy Version 1.19.4 newtype HappyAbsSyn = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn4 :: (Value) -> (HappyAbsSyn ) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn ) -> (Value) happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} happyIn5 :: (Value) -> (HappyAbsSyn ) happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn ) -> (Value) happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut5 #-} happyIn6 :: ([Section]) -> (HappyAbsSyn ) happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn ) -> ([Section]) happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut6 #-} happyIn7 :: (Section) -> (HappyAbsSyn ) happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn ) -> (Section) happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut7 #-} happyIn8 :: ([Value]) -> (HappyAbsSyn ) happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn ) -> ([Value]) happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut8 #-} happyIn9 :: ([Value]) -> (HappyAbsSyn ) happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn9 #-} happyOut9 :: (HappyAbsSyn ) -> ([Value]) happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut9 #-} happyIn10 :: ([Value]) -> (HappyAbsSyn ) happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn10 #-} happyOut10 :: (HappyAbsSyn ) -> ([Value]) happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut10 #-} happyInTok :: (Located Token) -> (HappyAbsSyn ) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn ) -> (Located Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x01\x00\x33\x00\x23\x00\x00\x00\x01\x00\x25\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x0a\x00\x26\x00\x00\x00\x00\x00\x29\x00\x0d\x00\x00\x00\x28\x00\x00\x00\x00\x00\x12\x00\x00\x00\x00\x00\x01\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x27\x00\x07\x00\x00\x00\x00\x00\x22\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\xff\x00\x00\x00\x00\x18\x00\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\xf5\xff\x00\x00\x00\x00\xfc\xff\x00\x00\xfa\xff\xfb\xff\xf9\xff\xf8\xff\x00\x00\xf0\xff\x00\x00\xf7\xff\xee\xff\x00\x00\xef\xff\xf2\xff\x00\x00\xfd\xff\xf3\xff\x00\x00\xfe\xff\xf4\xff\x00\x00\x00\x00\xf6\xff\xed\xff\xf1\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x03\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x02\x00\x03\x00\x0a\x00\x02\x00\x03\x00\x04\x00\x05\x00\x01\x00\x07\x00\x01\x00\x01\x00\x0a\x00\x08\x00\x05\x00\x06\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x0c\x00\x0d\x00\x06\x00\x0c\x00\x0d\x00\x0b\x00\x09\x00\x0e\x00\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x19\x00\x05\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x02\x00\x03\x00\x0f\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x1d\x00\x0e\x00\x10\x00\x05\x00\x0f\x00\x1c\x00\x11\x00\x12\x00\x1e\x00\x06\x00\x02\x00\x03\x00\x07\x00\x13\x00\x06\x00\x02\x00\x03\x00\x07\x00\x16\x00\x06\x00\x02\x00\x03\x00\x07\x00\x05\x00\x06\x00\x02\x00\x03\x00\x07\x00\x15\x00\x16\x00\x1b\x00\x18\x00\x19\x00\x10\x00\x1d\x00\xff\xff\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 18) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12), (13 , happyReduce_13), (14 , happyReduce_14), (15 , happyReduce_15), (16 , happyReduce_16), (17 , happyReduce_17), (18 , happyReduce_18) ] happy_n_terms = 15 :: Int happy_n_nonterms = 7 :: Int happyReduce_1 = happySpecReduce_2 0# happyReduction_1 happyReduction_1 happy_x_2 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> happyIn4 (Sections (reverse happy_var_1) )} happyReduce_2 = happySpecReduce_2 0# happyReduction_2 happyReduction_2 happy_x_2 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> happyIn4 (List (reverse happy_var_1) )} happyReduce_3 = happySpecReduce_1 0# happyReduction_3 happyReduction_3 happy_x_1 = case happyOut5 happy_x_1 of { happy_var_1 -> happyIn4 (happy_var_1 )} happyReduce_4 = happySpecReduce_1 1# happyReduction_4 happyReduction_4 happy_x_1 = case happyOutTok happy_x_1 of { (Located _ happy_var_1@T.Number{}) -> happyIn5 (number happy_var_1 )} happyReduce_5 = happySpecReduce_1 1# happyReduction_5 happyReduction_5 happy_x_1 = case happyOutTok happy_x_1 of { (Located _ (T.String happy_var_1)) -> happyIn5 (Text happy_var_1 )} happyReduce_6 = happySpecReduce_1 1# happyReduction_6 happyReduction_6 happy_x_1 = happyIn5 (Bool True ) happyReduce_7 = happySpecReduce_1 1# happyReduction_7 happyReduction_7 happy_x_1 = happyIn5 (Bool False ) happyReduce_8 = happySpecReduce_2 1# happyReduction_8 happyReduction_8 happy_x_2 happy_x_1 = happyIn5 (Sections [] ) happyReduce_9 = happySpecReduce_3 1# happyReduction_9 happyReduction_9 happy_x_3 happy_x_2 happy_x_1 = case happyOut9 happy_x_2 of { happy_var_2 -> happyIn5 (List happy_var_2 )} happyReduce_10 = happySpecReduce_1 2# happyReduction_10 happyReduction_10 happy_x_1 = case happyOut7 happy_x_1 of { happy_var_1 -> happyIn6 ([happy_var_1] )} happyReduce_11 = happySpecReduce_3 2# happyReduction_11 happyReduction_11 happy_x_3 happy_x_2 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_3 of { happy_var_3 -> happyIn6 (happy_var_3 : happy_var_1 )}} happyReduce_12 = happySpecReduce_2 3# happyReduction_12 happyReduction_12 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { (Located _ (T.Section happy_var_1)) -> case happyOut4 happy_x_2 of { happy_var_2 -> happyIn7 (Section happy_var_1 happy_var_2 )}} happyReduce_13 = happySpecReduce_2 4# happyReduction_13 happyReduction_13 happy_x_2 happy_x_1 = case happyOut4 happy_x_2 of { happy_var_2 -> happyIn8 ([happy_var_2] )} happyReduce_14 = happyReduce 4# 4# happyReduction_14 happyReduction_14 (happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOut8 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_4 of { happy_var_4 -> happyIn8 (happy_var_4 : happy_var_1 ) `HappyStk` happyRest}} happyReduce_15 = happySpecReduce_0 5# happyReduction_15 happyReduction_15 = happyIn9 ([] ) happyReduce_16 = happySpecReduce_1 5# happyReduction_16 happyReduction_16 happy_x_1 = case happyOut10 happy_x_1 of { happy_var_1 -> happyIn9 (reverse happy_var_1 )} happyReduce_17 = happySpecReduce_1 6# happyReduction_17 happyReduction_17 happy_x_1 = case happyOut5 happy_x_1 of { happy_var_1 -> happyIn10 ([happy_var_1] )} happyReduce_18 = happySpecReduce_3 6# happyReduction_18 happyReduction_18 happy_x_3 happy_x_2 happy_x_1 = case happyOut10 happy_x_1 of { happy_var_1 -> case happyOut5 happy_x_3 of { happy_var_3 -> happyIn10 (happy_var_3 : happy_var_1 )}} happyNewToken action sts stk = lexerP(\tk -> let cont i = happyDoAction i tk action sts stk in case tk of { Located _ T.EOF -> happyDoAction 14# tk action sts stk; Located _ (T.Section happy_dollar_dollar) -> cont 1#; Located _ (T.String happy_dollar_dollar) -> cont 2#; Located _ happy_dollar_dollar@T.Number{} -> cont 3#; Located _ T.Yes -> cont 4#; Located _ T.No -> cont 5#; Located _ T.Bullet -> cont 6#; Located _ T.OpenList -> cont 7#; Located _ T.Comma -> cont 8#; Located _ T.CloseList -> cont 9#; Located _ T.OpenMap -> cont 10#; Located _ T.CloseMap -> cont 11#; Located _ T.LayoutSep -> cont 12#; Located _ T.LayoutEnd -> cont 13#; _ -> happyError' tk }) happyError_ 14# tk = happyError' tk happyError_ _ tk = happyError' tk happyThen :: () => ParseM a -> (a -> ParseM b) -> ParseM b happyThen = (>>=) happyReturn :: () => a -> ParseM a happyReturn = (return) happyThen1 = happyThen happyReturn1 :: () => a -> ParseM a happyReturn1 = happyReturn happyError' :: () => (Located Token) -> ParseM a happyError' tk = (\token -> happyError) tk value = happySomeParser where happySomeParser = happyThen (happyParse 0#) (\x -> happyReturn (happyOut4 x)) happySeq = happyDontSeq number :: T.Token -> Value number (T.Number base val) = Number base val number _ = error "Config.Parser.number: fatal error" newtype ParseM a = ParseM { runParseM :: Position -> [Located Token] -> Either (Int,Int) (Position,[Located Token], a) } -- | Parse a configuration value and return the result on the -- right, or the position of an error on the left. parse :: Text {- ^ Source -} -> Either (Int,Int) Value {- ^ Either (Line,Column) Result -} parse txt = do (_,_,x) <- runParseM value (error "previous token") $ layoutPass $ scanTokens txt return x instance Functor ParseM where fmap = liftM instance Applicative ParseM where (<*>) = ap pure = return instance Monad ParseM where return x = ParseM $ \t ts -> do return (t,ts,x) m >>= f = ParseM $ \t ts -> do (t',ts',x) <- runParseM m t ts runParseM (f x) t' ts' lexerP :: (Located Token -> ParseM a) -> ParseM a lexerP k = ParseM $ \_ toks -> case toks of [] -> error "Unexpected end of token stream" t:toks' -> runParseM (k t) (locPosition t) toks' -- required by 'happy' happyError :: ParseM a happyError = ParseM $ \posn _ -> Left (posLine posn, posColumn posn) {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 13 "templates/GenericTemplate.hs" #-} -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif {-# LINE 46 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList {-# LINE 67 "templates/GenericTemplate.hs" #-} {-# LINE 77 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 170 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.