-- {-# LANGUAGE ConstrainedClassMethods #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE CPP #-} module Data.Prd ( Down(..) , Ord(min, max, compare) , module Data.Prd ) where import Data.Function import Data.Int as Int (Int, Int8, Int16, Int32, Int64) import Data.List.NonEmpty (NonEmpty(..)) import Data.Maybe import Data.Monoid hiding (First, Last) import Data.Ord (Ord, Down(..), compare, min, max) import Data.Ratio import Data.Word (Word, Word8, Word16, Word32, Word64) import GHC.Real hiding (Fractional(..), div, (^^), (^), (%)) import Numeric.Natural --import Data.Semigroup import Data.Semigroup.Additive import Data.Semigroup.Multiplicative import Data.Semiring import Data.Semifield (Field, Semifield, anan, pinf, ninf) import Data.Fixed import qualified Data.Semigroup as S import qualified Data.Set as Set import qualified Data.Map as Map import qualified Data.IntMap as IntMap import qualified Data.IntSet as IntSet import qualified Prelude as P import Prelude hiding (Ord(..), Fractional(..),Num(..)) infix 4 <=, >=, <, >, =~, ~~, !~, /~, ?~, `pgt`, `pge`, `peq`, `pne`, `ple`, `plt` -- | A partial order on /a/. -- -- A poset relation '<=' must satisfy the following three partial order axioms: -- -- \( \forall x: x \leq x \) (reflexivity) -- -- \( \forall a, b: (a \leq b) \Leftrightarrow \neg (b \leq a) \) (anti-symmetry) -- -- \( \forall a, b, c: ((a \leq b) \wedge (b \leq c)) \Rightarrow (a \leq c) \) (transitivity) -- -- If a prior equality relation is available, then a valid @Prd a@ instance may be derived from a semiorder relation 'lt' as: -- -- @ -- x '<=' y '==' 'lt' x y '||' x '==' y -- @ -- -- If /a/ is derived from a semiorder then the definition of 'lt' must satisfy the three semiorder axioms: -- -- \( \forall x, y: x \lt y \Rightarrow \neg y \lt x \) (asymmetry) -- -- \( \forall x, y, z, w: x \lt y \wedge y \sim z \wedge z \lt w \Rightarrow x \lt w \) (2-2 chain) -- -- \( \forall x, y, z, w: x \lt y \wedge y \lt z \wedge y \sim w \Rightarrow \neg (x \sim w \wedge z \sim w) \) (3-1 chain) -- -- The poset axioms on '<=' then follow from the first & second axioms on 'lt', -- however the converse is not true. While the first semiorder axiom on 'lt' follows, the second -- and third semiorder axioms forbid partial orders of four items forming two disjoint chains: -- -- * the second axiom forbids two chains of two items each (the (2+2) free poset) -- * the third axiom forbids a three-item chain with one unrelated item -- -- See also the wikipedia definitions of -- and . -- class Prd a where {-# MINIMAL (<=) | pcompare #-} -- | Non-strict partial order relation on /a/. -- -- '<=' is reflexive, anti-symmetric, and transitive. -- -- Furthermore we have: -- -- @ -- x '<=' y ≡ 'maybe' 'False' ('<=' 'EQ') ('pcompare' x y) -- x '<=' y ≡ x '<' y '||' x '=~' y -- @ -- for all /x/, /y/ in /a/. -- (<=) :: a -> a -> Bool x <= y = maybe False (P.<= EQ) $ pcompare x y -- | Converse non-strict partial order relation on /a/. -- -- '>=' is reflexive, anti-symmetric, and transitive. -- -- Furthermore we have: -- -- @ -- x '>=' y ≡ 'maybe' 'False' ('>=' 'EQ') ('pcompare' x y) -- x '>=' y ≡ x '>' y '||' x '=~' y -- @ -- for all /x/, /y/ in /a/. -- (>=) :: a -> a -> Bool (>=) = flip (<=) -- | Strict partial order relation on /a/. -- -- '<' is irreflexive, asymmetric, and transitive. -- -- Furthermore we have: -- -- @ -- x '<' y ≡ 'maybe' 'False' ('<' 'EQ') ('pcompare' x y) -- x '<' y ≡ x '?~' y '==>' x '<=' y '&&' x '\~' y -- @ -- for all /x/, /y/ in /a/. -- (<) :: a -> a -> Bool x < y = maybe False (P.< EQ) $ pcompare x y -- | Converse strict partial order relation on /a/. -- -- '>' is irreflexive, asymmetric, and transitive. -- -- Furthermore we have: -- -- @ -- x '>' y ≡ 'maybe' 'False' ('>' 'EQ') ('pcompare' x y) -- x '>' y ≡ x '?~' y '==>' x '>=' y '&&' x '\~' y -- @ -- for all /x/, /y/ in /a/. -- (>) :: Prd a => a -> a -> Bool x > y = maybe False (P.> EQ) $ pcompare x y -- | Comparability relation on /a/. -- -- '?~' is reflexive, symmetric, and transitive. -- -- Furthermore we have: -- -- @ -- x '=~' y ≡ 'maybe' 'False' ('const' 'True') ('pcompare' x y) -- x '=~' y ≡ x '<=' y '||' x '>=' y -- @ -- for all /x/, /y/ in /a/. -- -- If /a/ implements 'Ord' then we must have: -- -- @x '?~' y ≡ 'True'@ -- for all /x/, /y/ in /a/. -- (?~) :: a -> a -> Bool x ?~ y = maybe False (const True) $ pcompare x y -- | Equivalence relation on /a/. -- -- '=~' is reflexive, symmetric, and transitive: -- -- Furthermore we have: -- -- @ -- x '=~' y ≡ 'maybe' 'False' ('=~' 'EQ') ('pcompare' x y) -- x '=~' y ≡ x '<=' y '&&' x '>=' y -- @ -- for all /x/, /y/ in /a/. -- -- If /a/ implements 'Eq' then it is recommended to use the -- same definitions for '==' and '=~'. -- (=~) :: a -> a -> Bool x =~ y = maybe False (== EQ) $ pcompare x y -- | Negation of '=~'. -- (/~) :: a -> a -> Bool x /~ y = not $ x =~ y -- | Similarity relation on /a/. -- -- '~~' is reflexive and symmetric, but not necessarily transitive. -- -- Furthermore we have: -- -- @ -- x '>=' y ≡ 'maybe' 'True' ('=~' 'EQ') ('pcompare' x y) -- x '~~' y ≡ 'not' (x '<' y) '&&' 'not' (x '<' y) -- @ -- for all /x/, /y/ in /a/. -- -- If /a/ implements 'Ord' then we must have: -- -- @x '~~' y ≡ x '=~' y @ -- for all /x/, /y/ in /a/. -- (~~) :: a -> a -> Bool x ~~ y = not (x < y) && not (x > y) -- | Negation of '~~'. -- (!~) :: a -> a -> Bool x !~ y = not $ x ~~ y -- | Partial version of 'compare'. -- pcompare :: a -> a -> Maybe Ordering pcompare x y | x <= y = Just $ if y <= x then EQ else LT | y <= x = Just GT | otherwise = Nothing type Bound a = (Minimal a, Maximal a) -- | A minimal element of a partially ordered set. -- -- @ 'minimal' '?~' a '==>' 'minimal' '<=' a @ -- -- Note that 'minimal' needn't be comparable to all values in /a/. -- -- When /a/ is a 'Field' we should have: @ 'minimal' '==' 'ninf' @. -- -- See < https://en.wikipedia.org/wiki/Maximal_and_minimal_elements >. -- class Prd a => Minimal a where minimal :: a -- | A maximal element of a partially ordered set. -- -- @ 'maximal' '?~' a '==>' 'maximal' '>=' a @ -- -- Note that 'maximal' needn't be comparable to all values in /a/. -- -- When /a/ is a 'Semifield' we should have @ 'maximal' = 'pinf' @. -- -- See < https://en.wikipedia.org/wiki/Maximal_and_minimal_elements >. -- class Prd a => Maximal a where maximal :: a -- | Version of 'pcompare' that uses a semiorder relation and '=='. -- -- See . -- pcompareEq :: Eq a => (a -> a -> Bool) -> a -> a -> Maybe Ordering pcompareEq lt x y | lt x y = Just LT | x == y = Just EQ | lt y x = Just GT | otherwise = Nothing -- | Version of 'pcompare' that uses 'compare'. -- pcompareOrd :: Ord a => a -> a -> Maybe Ordering pcompareOrd x y = Just $ x `compare` y -- | A partial version of ('=~') -- -- Returns 'Nothing' instead of 'False' when the two values are not comparable. -- peq :: Prd a => a -> a -> Maybe Bool peq x y = do o <- pcompare x y case o of EQ -> Just True _ -> Just False -- | A partial version of ('/~') -- -- Returns 'Nothing' instead of 'False' when the two values are not comparable. -- pne :: Prd a => a -> a -> Maybe Bool pne x y = do o <- pcompare x y case o of EQ -> Just False _ -> Just True -- | A partial version of ('<=') -- -- Returns 'Nothing' instead of 'False' when the two values are not comparable. -- ple :: Prd a => a -> a -> Maybe Bool ple x y = do o <- pcompare x y case o of GT -> Just False _ -> Just True -- | A partial version of ('>=') -- -- Returns 'Nothing' instead of 'False' when the two values are not comparable. -- pge :: Prd a => a -> a -> Maybe Bool pge x y = do o <- pcompare x y case o of LT -> Just False _ -> Just True -- | A partial version of ('<') -- -- Returns 'Nothing' instead of 'False' when the two values are not comparable. -- -- @lt x y == maybe False id $ plt x y@ -- plt :: Prd a => a -> a -> Maybe Bool plt x y = do o <- pcompare x y case o of LT -> Just True _ -> Just False -- | A partial version of ('>') -- -- Returns 'Nothing' instead of 'False' when the two values are not comparable. -- -- @gt x y == maybe False id $ pgt x y@ -- pgt :: Prd a => a -> a -> Maybe Bool pgt x y = do o <- pcompare x y case o of GT -> Just True _ -> Just False -- | A partial version of 'Data.Ord.max'. -- -- Returns the right argument in the case of equality. -- pmax :: Prd a => a -> a -> Maybe a pmax x y = do o <- pcompare x y case o of GT -> Just x _ -> Just y -- | A partial version of 'Data.Ord.min'. -- -- Returns the right argument in the case of equality. -- pmin :: Prd a => a -> a -> Maybe a pmin x y = do o <- pcompare x y case o of GT -> Just y _ -> Just x pabs :: (Additive-Group) a => Prd a => a -> a pabs x = if zero <= x then x else negate x sign :: (Additive-Monoid) a => Prd a => a -> Maybe Ordering sign x = pcompare x zero finite :: Prd a => Semifield a => a -> Bool finite = (/~ anan) * (/~ pinf) finite' :: Prd a => Field a => a -> Bool finite' = finite * (/~ ninf) extend :: (Prd a, Semifield a, Semifield b) => (a -> b) -> a -> b extend f x | x =~ anan = anan | x =~ pinf = pinf | otherwise = f x extend' :: (Prd a, Field a, Field b) => (a -> b) -> a -> b extend' f x | x =~ ninf = ninf | otherwise = extend f x --------------------------------------------------------------------- -- Instances --------------------------------------------------------------------- instance Prd a => Prd [a] where {-# SPECIALISE instance Prd [Char] #-} [] <= _ = True (_:_) <= [] = False (x:xs) <= (y:ys) = x <= y && xs <= ys {- pcompare [] [] = Just EQ pcompare [] (_:_) = Just LT pcompare (_:_) [] = Just GT pcompare (x:xs) (y:ys) = case pcompare x y of Just EQ -> pcompare xs ys other -> other -} instance Prd a => Prd (NonEmpty a) where (x :| xs) <= (y :| ys) = x <= y && xs <= ys instance Prd a => Prd (Down a) where (Down x) <= (Down y) = y <= x pcompare (Down x) (Down y) = pcompare y x -- Canonically ordered. instance Prd a => Prd (Dual a) where (Dual x) <= (Dual y) = y <= x pcompare (Dual x) (Dual y) = pcompare y x instance Prd a => Prd (S.Max a) where S.Max a <= S.Max b = a <= b instance Prd a => Prd (S.Min a) where S.Min a <= S.Min b = a <= b instance Prd Any where Any x <= Any y = x <= y instance Prd All where All x <= All y = y <= x instance Prd Float where x <= y | x /= x && y /= y = True | x /= x || y /= y = False | otherwise = x P.<= y x =~ y | x /= x && y /= y = True | x /= x || y /= y = False | otherwise = x == y x ?~ y | x /= x && y /= y = True | x /= x || y /= y = False | otherwise = True pcompare x y | x /= x && y /= y = Just EQ | x /= x || y /= y = Nothing | otherwise = pcompareOrd x y instance Prd Double where x <= y | x /= x && y /= y = True | x /= x || y /= y = False | otherwise = x P.<= y x =~ y | x /= x && y /= y = True | x /= x || y /= y = False | otherwise = x == y x ?~ y | x /= x && y /= y = True | x /= x || y /= y = False | otherwise = True pcompare x y | x /= x && y /= y = Just EQ | x /= x || y /= y = Nothing | otherwise = pcompareOrd x y instance Prd (Ratio Integer) where pcompare (x:%y) (x':%y') | (x == 0 && y == 0) && (x' == 0 && y' == 0) = Just EQ | (x == 0 && y == 0) || (x' == 0 && y' == 0) = Nothing | y == 0 && y' == 0 = Just $ compare (signum x) (signum x') | y == 0 = pcompareOrd x 0 | y' == 0 = pcompareOrd 0 x' | otherwise = pcompareOrd (x%y) (x'%y') --TODO add prop tests instance Prd (Ratio Natural) where pcompare (x:%y) (x':%y') | (x == 0 && y == 0) && (x' == 0 && y' == 0) = Just EQ | (x == 0 && y == 0) || (x' == 0 && y' == 0) = Nothing | y == 0 && y' == 0 = Just EQ | y == 0 = Just GT | y' == 0 = Just LT | otherwise = pcompareOrd (x*y') (x'*y) -- Canonical semigroup ordering instance Prd a => Prd (Maybe a) where Just a <= Just b = a <= b Just{} <= Nothing = False Nothing <= _ = True -- Canonical semigroup ordering instance (Prd a, Prd b) => Prd (Either a b) where Right a <= Right b = a <= b Right _ <= _ = False Left e <= Left f = e <= f Left _ <= _ = True -- Canonical semigroup ordering instance (Prd a, Prd b) => Prd (a, b) where (a,b) <= (i,j) = a <= i && b <= j instance (Prd a, Prd b, Prd c) => Prd (a, b, c) where (a,b,c) <= (i,j,k) = a <= i && b <= j && c <= k instance (Prd a, Prd b, Prd c, Prd d) => Prd (a, b, c, d) where (a,b,c,d) <= (i,j,k,l) = a <= i && b <= j && c <= k && d <= l instance (Prd a, Prd b, Prd c, Prd d, Prd e) => Prd (a, b, c, d, e) where (a,b,c,d,e) <= (i,j,k,l,m) = a <= i && b <= j && c <= k && d <= l && e <= m instance Ord a => Prd (Set.Set a) where (<=) = Set.isSubsetOf instance (Ord k, Prd a) => Prd (Map.Map k a) where (<=) = Map.isSubmapOfBy (<=) instance Prd a => Prd (IntMap.IntMap a) where (<=) = IntMap.isSubmapOfBy (<=) instance Prd IntSet.IntSet where (<=) = IntSet.isSubsetOf #define derivePrd(ty) \ instance Prd ty where { \ (<=) = (P.<=) \ ; {-# INLINE (<=) #-} \ ; (>=) = (P.>=) \ ; {-# INLINE (>=) #-} \ ; (<) = (P.<) \ ; {-# INLINE (<) #-} \ ; (>) = (P.>) \ ; {-# INLINE (>) #-} \ ; (=~) = (P.==) \ ; {-# INLINE (=~) #-} \ ; (~~) = (P.==) \ ; {-# INLINE (~~) #-} \ ; pcompare = pcompareOrd \ ; {-# INLINE pcompare #-} \ } derivePrd(()) derivePrd(Bool) derivePrd(Char) derivePrd(Ordering) derivePrd(Int) derivePrd(Int8) derivePrd(Int16) derivePrd(Int32) derivePrd(Int64) derivePrd(Integer) derivePrd(Word) derivePrd(Word8) derivePrd(Word16) derivePrd(Word32) derivePrd(Word64) derivePrd(Natural) derivePrd(Uni) derivePrd(Deci) derivePrd(Centi) derivePrd(Milli) derivePrd(Micro) derivePrd(Nano) derivePrd(Pico) ------------------------------------------------------------------------------- -- Minimal ------------------------------------------------------------------------------- instance Minimal Float where minimal = ninf instance Minimal Double where minimal = ninf instance Minimal Natural where minimal = 0 instance Minimal (Ratio Natural) where minimal = 0 instance Minimal IntSet.IntSet where minimal = IntSet.empty instance Prd a => Minimal (IntMap.IntMap a) where minimal = IntMap.empty instance Ord a => Minimal (Set.Set a) where minimal = Set.empty instance (Ord k, Prd a) => Minimal (Map.Map k a) where minimal = Map.empty instance (Minimal a, Minimal b) => Minimal (a, b) where minimal = (minimal, minimal) instance (Minimal a, Prd b) => Minimal (Either a b) where minimal = Left minimal instance Prd a => Minimal (Maybe a) where minimal = Nothing instance Maximal a => Minimal (Down a) where minimal = Down maximal instance Maximal a => Minimal (Dual a) where minimal = Dual maximal #define deriveMinimal(ty) \ instance Minimal ty where { \ minimal = minBound \ ; {-# INLINE minimal #-} \ } deriveMinimal(()) deriveMinimal(Bool) deriveMinimal(Ordering) deriveMinimal(Int) deriveMinimal(Int8) deriveMinimal(Int16) deriveMinimal(Int32) deriveMinimal(Int64) deriveMinimal(Word) deriveMinimal(Word8) deriveMinimal(Word16) deriveMinimal(Word32) deriveMinimal(Word64) ------------------------------------------------------------------------------- -- Maximal ------------------------------------------------------------------------------- #define deriveMaximal(ty) \ instance Maximal ty where { \ maximal = maxBound \ ; {-# INLINE maximal #-} \ } deriveMaximal(()) deriveMaximal(Bool) deriveMaximal(Ordering) deriveMaximal(Int) deriveMaximal(Int8) deriveMaximal(Int16) deriveMaximal(Int32) deriveMaximal(Int64) deriveMaximal(Word) deriveMaximal(Word8) deriveMaximal(Word16) deriveMaximal(Word32) deriveMaximal(Word64) instance Maximal Float where maximal = pinf instance Maximal Double where maximal = pinf instance (Maximal a, Maximal b) => Maximal (a, b) where maximal = (maximal, maximal) instance (Prd a, Maximal b) => Maximal (Either a b) where maximal = Right maximal instance Maximal a => Maximal (Maybe a) where maximal = Just maximal instance Minimal a => Maximal (Dual a) where maximal = Dual minimal instance Minimal a => Maximal (Down a) where maximal = Down minimal ------------------------------------------------------------------------------- -- Iterators ------------------------------------------------------------------------------- {-# INLINE until #-} until :: (a -> Bool) -> (a -> a -> Bool) -> (a -> a) -> a -> a until pre rel f seed = go seed where go x | x' `rel` x = x | pre x = x | otherwise = go x' where x' = f x {-# INLINE while #-} while :: (a -> Bool) -> (a -> a -> Bool) -> (a -> a) -> a -> a while pre rel f seed = go seed where go x | x' `rel` x = x | not (pre x') = x | otherwise = go x' where x' = f x -- | Greatest (resp. least) fixed point of a monitone (resp. antitone) function. -- -- Does not check that the function is monitone (resp. antitone). -- -- See also < http://en.wikipedia.org/wiki/Kleene_fixed-point_theorem >. -- {-# INLINE fixed #-} fixed :: (a -> a -> Bool) -> (a -> a) -> a -> a fixed = while (\_ -> True)