{-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 707 {-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE RoleAnnotations #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Constraint -- Copyright : (C) 2011-2015 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- @ConstraintKinds@ made type classes into types of a new kind, @Constraint@. -- -- @ -- 'Eq' :: * -> 'Constraint' -- 'Ord' :: * -> 'Constraint' -- 'Monad' :: (* -> *) -> 'Constraint' -- @ -- -- The need for this extension was first publicized in the paper -- -- -- -- by Ralf Lämmel and Simon Peyton Jones in 2005, which shoehorned all the -- things they needed into a custom 'Sat' typeclass. -- -- With @ConstraintKinds@ we can put into code a lot of tools for manipulating -- these new types without such awkward workarounds. ---------------------------------------------------------------------------- module Data.Constraint ( -- * The Kind of Constraints Constraint -- * Dictionary , Dict(Dict) -- * Entailment , (:-)(Sub) , (\\) , weaken1, weaken2, contract , (&&&), (***) , trans, refl , top, bottom -- * Dict is fully faithful , mapDict , unmapDict -- * Reflection , Class(..) , (:=>)(..) ) where import Control.Monad #if __GLASGOW_HASKELL__ >= 707 import Control.Category #endif import Control.Applicative #if __GLASGOW_HASKELL__ < 710 import Data.Monoid #endif import Data.Complex import Data.Ratio #if __GLASGOW_HASKELL__ >= 707 import Data.Data #endif import GHC.Prim (Constraint) -- | Values of type @'Dict' p@ capture a dictionary for a constraint of type @p@. -- -- e.g. -- -- @ -- 'Dict' :: 'Dict' ('Eq' 'Int') -- @ -- -- captures a dictionary that proves we have an: -- -- @ -- instance 'Eq' 'Int -- @ -- -- Pattern matching on the 'Dict' constructor will bring this instance into scope. -- data Dict :: Constraint -> * where Dict :: a => Dict a #if __GLASGOW_HASKELL__ >= 707 deriving Typeable instance (Typeable p, p) => Data (Dict p) where gfoldl _ z Dict = z Dict toConstr _ = dictConstr gunfold _ z c = case constrIndex c of 1 -> z Dict _ -> error "gunfold" dataTypeOf _ = dictDataType dictConstr :: Constr dictConstr = mkConstr dictDataType "Dict" [] Prefix dictDataType :: DataType dictDataType = mkDataType "Data.Constraint.Dict" [dictConstr] #endif deriving instance Eq (Dict a) deriving instance Ord (Dict a) deriving instance Show (Dict a) infixr 9 :- -- | This is the type of entailment. -- -- @a ':-' b@ is read as @a@ \"entails\" @b@. -- -- With this we can actually build a category for 'Constraint' resolution. -- -- e.g. -- -- Because @'Eq' a@ is a superclass of @'Ord' a@, we can show that @'Ord' a@ -- entails @'Eq' a@. -- -- Because @instance 'Ord' a => 'Ord' [a]@ exists, we can show that @'Ord' a@ -- entails @'Ord' [a]@ as well. -- -- This relationship is captured in the ':-' entailment type here. -- -- Since @p ':-' p@ and entailment composes, ':-' forms the arrows of a 'Category' -- of constraints. However, 'Category' only because sufficiently general to support this -- instance in GHC 7.8, so prior to 7.8 this instance is unavailable. -- -- But due to the coherence of instance resolution in Haskell, this 'Category' -- has some very interesting properties. Notably, in the absence of -- @IncoherentInstances@, this category is \"thin\", which is to say that -- between any two objects (constraints) there is at most one distinguishable -- arrow. -- -- This means that for instance, even though there are two ways to derive -- @'Ord' a ':-' 'Eq' [a]@, the answers from these two paths _must_ by -- construction be equal. This is a property that Haskell offers that is -- pretty much unique in the space of languages with things they call \"type -- classes\". -- -- What are the two ways? -- -- Well, we can go from @'Ord' a ':-' 'Eq' a@ via the -- superclass relationship, and them from @'Eq' a ':-' 'Eq' [a]@ via the -- instance, or we can go from @'Ord' a ':-' 'Ord' [a]@ via the instance -- then from @'Ord' [a] ':-' 'Eq' [a]@ through the superclass relationship -- and this diagram by definition must \"commute\". -- -- Diagrammatically, -- -- > Ord a -- > ins / \ cls -- > v v -- > Ord [a] Eq a -- > cls \ / ins -- > v v -- > Eq [a] -- -- This safety net ensures that pretty much anything you can write with this -- library is sensible and can't break any assumptions on the behalf of -- library authors. newtype a :- b = Sub (a => Dict b) #if __GLASGOW_HASKELL__ >= 707 deriving Typeable type role (:-) nominal nominal -- TODO: _proper_ Data for @(p ':-' q)@ requires @(:-)@ to be cartesian _closed_. -- -- This is admissable, but not present by default -- constraint should be instance (Typeable p, Typeable q, p |- q) => Data (p :- q) instance (Typeable p, Typeable q, p, q) => Data (p :- q) where gfoldl _ z (Sub Dict) = z (Sub Dict) toConstr _ = subConstr gunfold _ z c = case constrIndex c of 1 -> z (Sub Dict) _ -> error "gunfold" dataTypeOf _ = subDataType subConstr :: Constr subConstr = mkConstr dictDataType "Sub" [] Prefix subDataType :: DataType subDataType = mkDataType "Data.Constraint.:-" [subConstr] -- | Possible since GHC 7.8, when 'Category' was made polykinded. instance Category (:-) where id = refl (.) = trans #endif -- | Assumes 'IncoherentInstances' doesn't exist. instance Eq (a :- b) where _ == _ = True -- | Assumes 'IncoherentInstances' doesn't exist. instance Ord (a :- b) where compare _ _ = EQ instance Show (a :- b) where showsPrec d _ = showParen (d > 10) $ showString "Sub Dict" infixl 1 \\ -- required comment -- | Given that @a :- b@, derive something that needs a context @b@, using the context @a@ (\\) :: a => (b => r) -> (a :- b) -> r r \\ Sub Dict = r -------------------------------------------------------------------------------- -- Constraints form a Category -------------------------------------------------------------------------------- -- | Transitivity of entailment -- -- If we view @(':-')@ as a Constraint-indexed category, then this is @('.')@ trans :: (b :- c) -> (a :- b) -> a :- c trans f g = Sub $ Dict \\ f \\ g -- | Reflexivity of entailment -- -- If we view @(':-')@ as a Constraint-indexed category, then this is 'id' refl :: a :- a refl = Sub Dict -------------------------------------------------------------------------------- -- (,) is a Bifunctor -------------------------------------------------------------------------------- -- | due to the hack for the kind of @(,)@ in the current version of GHC we can't actually -- make instances for @(,) :: Constraint -> Constraint -> Constraint@, but @(,)@ is a -- bifunctor on the category of constraints. This lets us map over both sides. (***) :: (a :- b) -> (c :- d) -> (a, c) :- (b, d) f *** g = Sub $ Dict \\ f \\ g -------------------------------------------------------------------------------- -- Constraints are Cartesian -------------------------------------------------------------------------------- -- | Weakening a constraint product -- -- The category of constraints is Cartesian. We can forget information. weaken1 :: (a, b) :- a weaken1 = Sub Dict -- | Weakening a constraint product -- -- The category of constraints is Cartesian. We can forget information. weaken2 :: (a, b) :- b weaken2 = Sub Dict -- | Contracting a constraint / diagonal morphism -- -- The category of constraints is Cartesian. We can reuse information. contract :: a :- (a, a) contract = Sub Dict -- | Constraint product -- -- > trans weaken1 (f &&& g) = f -- > trans weaken2 (f &&& g) = g (&&&) :: (a :- b) -> (a :- c) -> a :- (b, c) f &&& g = Sub $ Dict \\ f \\ g -------------------------------------------------------------------------------- -- Initial and terminal morphisms -------------------------------------------------------------------------------- -- | Every constraint implies truth -- -- These are the terminal arrows of the category, and @()@ is the terminal object. -- -- Given any constraint there is a unique entailment of the @()@ constraint from that constraint. top :: a :- () top = Sub Dict type family Ex (a :: *) (c :: Constraint) :: Constraint type instance Ex () c = () type instance Ex Bool c = c falso :: (() ~ a) :- Ex a c falso = Sub Dict -- | -- A bad type coercion lets you derive any constraint you want. -- -- These are the initial arrows of the category and @(() ~ Bool)@ is the initial object -- -- This demonstrates the law of classical logic bottom :: (() ~ Bool) :- c bottom = falso -------------------------------------------------------------------------------- -- Dict is fully faithful -------------------------------------------------------------------------------- -- | Apply an entailment to a dictionary. -- -- From a category theoretic perspective 'Dict' is a functor that maps from the category -- of constraints (with arrows in ':-') to the category Hask of Haskell data types. mapDict :: (a :- b) -> Dict a -> Dict b mapDict p Dict = case p of Sub q -> q -- | -- This functor is fully faithful, which is to say that given any function you can write -- @Dict a -> Dict b@ there also exists an entailment @a :- b@ in the category of constraints -- that you can build. unmapDict :: (Dict a -> Dict b) -> a :- b unmapDict f = Sub (f Dict) #if __GLASGOW_HASKELL__ >= 707 type role Dict nominal #endif -------------------------------------------------------------------------------- -- Reflection -------------------------------------------------------------------------------- -- | Reify the relationship between a class and its superclass constraints as a class -- -- Given a definition such as -- -- @ -- class Foo a => Bar a -- @ -- -- you can capture the relationship between 'Bar a' and its superclass 'Foo a' with -- -- @ -- instance 'Class' (Foo a) (Bar a) where 'cls' = 'Sub' 'Dict' -- @ -- -- Now the user can use 'cls :: Bar a :- Foo a' class Class b h | h -> b where cls :: h :- b infixr 9 :=> -- | Reify the relationship between an instance head and its body as a class -- -- Given a definition such as -- -- @ -- instance Foo a => Foo [a] -- @ -- -- you can capture the relationship between the instance head and its body with -- -- @ -- instance Foo a ':=>' Foo [a] where 'ins' = 'Sub' 'Dict' -- @ class b :=> h | h -> b where ins :: b :- h -- Bootstrapping instance Class () (Class b a) where cls = Sub Dict instance Class () (b :=> a) where cls = Sub Dict instance Class b a => () :=> Class b a where ins = Sub Dict instance (b :=> a) => () :=> b :=> a where ins = Sub Dict instance Class () () where cls = Sub Dict instance () :=> () where ins = Sub Dict -- Local, Prelude, Applicative, C.M.I and Data.Monoid instances -- Eq instance Class () (Eq a) where cls = Sub Dict instance () :=> Eq () where ins = Sub Dict instance () :=> Eq Int where ins = Sub Dict instance () :=> Eq Bool where ins = Sub Dict instance () :=> Eq Integer where ins = Sub Dict instance () :=> Eq Float where ins = Sub Dict instance () :=> Eq Double where ins = Sub Dict instance Eq a :=> Eq [a] where ins = Sub Dict instance Eq a :=> Eq (Maybe a) where ins = Sub Dict instance Eq a :=> Eq (Complex a) where ins = Sub Dict instance Eq a :=> Eq (Ratio a) where ins = Sub Dict instance (Eq a, Eq b) :=> Eq (a, b) where ins = Sub Dict instance (Eq a, Eq b) :=> Eq (Either a b) where ins = Sub Dict instance () :=> Eq (Dict a) where ins = Sub Dict instance () :=> Eq (a :- b) where ins = Sub Dict -- Ord instance Class (Eq a) (Ord a) where cls = Sub Dict instance () :=> Ord () where ins = Sub Dict instance () :=> Ord Bool where ins = Sub Dict instance () :=> Ord Int where ins = Sub Dict instance ():=> Ord Integer where ins = Sub Dict instance () :=> Ord Float where ins = Sub Dict instance ():=> Ord Double where ins = Sub Dict instance () :=> Ord Char where ins = Sub Dict instance Ord a :=> Ord (Maybe a) where ins = Sub Dict instance Ord a :=> Ord [a] where ins = Sub Dict instance (Ord a, Ord b) :=> Ord (a, b) where ins = Sub Dict instance (Ord a, Ord b) :=> Ord (Either a b) where ins = Sub Dict instance Integral a :=> Ord (Ratio a) where ins = Sub Dict instance () :=> Ord (Dict a) where ins = Sub Dict instance () :=> Ord (a :- b) where ins = Sub Dict -- Show instance Class () (Show a) where cls = Sub Dict instance () :=> Show () where ins = Sub Dict instance () :=> Show Bool where ins = Sub Dict instance () :=> Show Ordering where ins = Sub Dict instance () :=> Show Char where ins = Sub Dict instance Show a :=> Show (Complex a) where ins = Sub Dict instance Show a :=> Show [a] where ins = Sub Dict instance Show a :=> Show (Maybe a) where ins = Sub Dict instance (Show a, Show b) :=> Show (a, b) where ins = Sub Dict instance (Show a, Show b) :=> Show (Either a b) where ins = Sub Dict instance (Integral a, Show a) :=> Show (Ratio a) where ins = Sub Dict instance () :=> Show (Dict a) where ins = Sub Dict instance () :=> Show (a :- b) where ins = Sub Dict -- Read instance Class () (Read a) where cls = Sub Dict instance () :=> Read () where ins = Sub Dict instance () :=> Read Bool where ins = Sub Dict instance () :=> Read Ordering where ins = Sub Dict instance () :=> Read Char where ins = Sub Dict instance Read a :=> Read (Complex a) where ins = Sub Dict instance Read a :=> Read [a] where ins = Sub Dict instance Read a :=> Read (Maybe a) where ins = Sub Dict instance (Read a, Read b) :=> Read (a, b) where ins = Sub Dict instance (Read a, Read b) :=> Read (Either a b) where ins = Sub Dict instance (Integral a, Read a) :=> Read (Ratio a) where ins = Sub Dict -- Enum instance Class () (Enum a) where cls = Sub Dict instance () :=> Enum () where ins = Sub Dict instance () :=> Enum Bool where ins = Sub Dict instance () :=> Enum Ordering where ins = Sub Dict instance () :=> Enum Char where ins = Sub Dict instance () :=> Enum Int where ins = Sub Dict instance () :=> Enum Integer where ins = Sub Dict instance () :=> Enum Float where ins = Sub Dict instance () :=> Enum Double where ins = Sub Dict instance Integral a :=> Enum (Ratio a) where ins = Sub Dict -- Bounded instance Class () (Bounded a) where cls = Sub Dict instance () :=> Bounded () where ins = Sub Dict instance () :=> Bounded Ordering where ins = Sub Dict instance () :=> Bounded Bool where ins = Sub Dict instance () :=> Bounded Int where ins = Sub Dict instance () :=> Bounded Char where ins = Sub Dict instance (Bounded a, Bounded b) :=> Bounded (a,b) where ins = Sub Dict -- Num instance Class () (Num a) where cls = Sub Dict instance () :=> Num Int where ins = Sub Dict instance () :=> Num Integer where ins = Sub Dict instance () :=> Num Float where ins = Sub Dict instance () :=> Num Double where ins = Sub Dict instance RealFloat a :=> Num (Complex a) where ins = Sub Dict instance Integral a :=> Num (Ratio a) where ins = Sub Dict -- Real instance Class (Num a, Ord a) (Real a) where cls = Sub Dict instance () :=> Real Int where ins = Sub Dict instance () :=> Real Integer where ins = Sub Dict instance () :=> Real Float where ins = Sub Dict instance () :=> Real Double where ins = Sub Dict instance Integral a :=> Real (Ratio a) where ins = Sub Dict -- Integral instance Class (Real a, Enum a) (Integral a) where cls = Sub Dict instance () :=> Integral Int where ins = Sub Dict instance () :=> Integral Integer where ins = Sub Dict -- Fractional instance Class (Num a) (Fractional a) where cls = Sub Dict instance () :=> Fractional Float where ins = Sub Dict instance () :=> Fractional Double where ins = Sub Dict instance RealFloat a :=> Fractional (Complex a) where ins = Sub Dict instance Integral a :=> Fractional (Ratio a) where ins = Sub Dict -- Floating instance Class (Fractional a) (Floating a) where cls = Sub Dict instance () :=> Floating Float where ins = Sub Dict instance () :=> Floating Double where ins = Sub Dict instance RealFloat a :=> Floating (Complex a) where ins = Sub Dict -- RealFrac instance Class (Real a, Fractional a) (RealFrac a) where cls = Sub Dict instance () :=> RealFrac Float where ins = Sub Dict instance () :=> RealFrac Double where ins = Sub Dict instance Integral a :=> RealFrac (Ratio a) where ins = Sub Dict -- RealFloat instance Class (RealFrac a, Floating a) (RealFloat a) where cls = Sub Dict instance () :=> RealFloat Float where ins = Sub Dict instance () :=> RealFloat Double where ins = Sub Dict -- Monoid instance Class () (Monoid a) where cls = Sub Dict instance () :=> Monoid () where ins = Sub Dict instance () :=> Monoid Ordering where ins = Sub Dict instance () :=> Monoid [a] where ins = Sub Dict instance Monoid a :=> Monoid (Maybe a) where ins = Sub Dict instance (Monoid a, Monoid b) :=> Monoid (a, b) where ins = Sub Dict -- Functor instance Class () (Functor f) where cls = Sub Dict instance () :=> Functor [] where ins = Sub Dict instance () :=> Functor Maybe where ins = Sub Dict instance () :=> Functor (Either a) where ins = Sub Dict instance () :=> Functor ((->) a) where ins = Sub Dict instance () :=> Functor ((,) a) where ins = Sub Dict instance () :=> Functor IO where ins = Sub Dict instance Monad m :=> Functor (WrappedMonad m) where ins = Sub Dict -- Applicative instance Class (Functor f) (Applicative f) where cls = Sub Dict instance () :=> Applicative [] where ins = Sub Dict instance () :=> Applicative Maybe where ins = Sub Dict instance () :=> Applicative (Either a) where ins = Sub Dict instance () :=> Applicative ((->)a) where ins = Sub Dict instance () :=> Applicative IO where ins = Sub Dict instance Monoid a :=> Applicative ((,)a) where ins = Sub Dict instance Monad m :=> Applicative (WrappedMonad m) where ins = Sub Dict -- Alternative instance Class (Applicative f) (Alternative f) where cls = Sub Dict instance () :=> Alternative [] where ins = Sub Dict instance () :=> Alternative Maybe where ins = Sub Dict instance MonadPlus m :=> Alternative (WrappedMonad m) where ins = Sub Dict -- Monad instance Class () (Monad f) where cls = Sub Dict instance () :=> Monad [] where ins = Sub Dict instance () :=> Monad ((->) a) where ins = Sub Dict instance () :=> Monad (Either a) where ins = Sub Dict instance () :=> Monad IO where ins = Sub Dict -- MonadPlus instance Class (Monad f) (MonadPlus f) where cls = Sub Dict instance () :=> MonadPlus [] where ins = Sub Dict instance () :=> MonadPlus Maybe where ins = Sub Dict -------------------------------------------------------------------------------- -- UndecidableInstances -------------------------------------------------------------------------------- instance a :=> Enum (Dict a) where ins = Sub Dict instance a => Enum (Dict a) where toEnum _ = Dict fromEnum Dict = 0 instance a :=> Bounded (Dict a) where ins = Sub Dict instance a => Bounded (Dict a) where minBound = Dict maxBound = Dict instance a :=> Read (Dict a) where ins = Sub Dict deriving instance a => Read (Dict a) instance a :=> Monoid (Dict a) where ins = Sub Dict instance a => Monoid (Dict a) where mappend Dict Dict = Dict mempty = Dict