{-# LANGUAGE FlexibleInstances, UndecidableInstances #-} -- | Prufer domains are non-Noetherian analogues of Dedekind domains. That is -- integral domains in which every finitely generated ideal is invertible. This -- implementation is mainly based on: -- -- http:\/\/hlombardi.free.fr\/liens\/salouThesis.pdf -- module Algebra.Structures.PruferDomain ( PruferDomain(..) , propCalcUVW, propPruferDomain , calcUVW_B, calcUVWT, propCalcUVWT, fromUVWTtoUVW , computePLM_PD , invertIdeal , intersectionPD, intersectionPDWitness, solvePD ) where import Test.QuickCheck import Data.List (nub, (\\)) import Algebra.Structures.IntegralDomain import Algebra.Structures.BezoutDomain import Algebra.Structures.Coherent import Algebra.Ideal import Algebra.Matrix ------------------------------------------------------------------------------- -- | Given a and b it computes u, v and we such that: -- -- (1) au = bv -- -- (2) b(1-u) = aw -- class IntegralDomain a => PruferDomain a where -- a b u v w calcUVW :: a -> a -> (a,a,a) -- | Property specifying that: -- au = bv and b(1-u) = aw propCalcUVW :: (PruferDomain a, Eq a) => a -> a -> Bool propCalcUVW a b = a <*> u == b <*> v && b <*> (one <-> u) == a <*> w where (u,v,w) = calcUVW a b propPruferDomain :: (PruferDomain a, Eq a) => a -> a -> a -> Property propPruferDomain a b c | propCalcUVW a b = propIntegralDomain a b c | otherwise = whenFail (print "propCalcUVW") False -- | Alternative characterization of Prufer domains, given a and b compute u, v, -- w, t such that: -- -- ua = vb && wa = tb && u+t = 1 calcUVWT :: PruferDomain a => a -> a -> (a,a,a,a) calcUVWT a b = (x,y,z,one <-> x) where (x,y,z) = calcUVW a b propCalcUVWT :: (PruferDomain a, Eq a) => a -> a -> Bool propCalcUVWT a b = u <*> a == v <*> b && w <*> a == t <*> b && u <+> t == one where (u,v,w,t) = calcUVWT a b -- | Go back to the original definition. fromUVWTtoUVW :: (a,a,a,a) -> (a,a,a) fromUVWTtoUVW (u,v,w,t) = (u,v,w) -------------------------------------------------------------------------------- -- | Bezout domain -> Prufer domain -- {- Prufer: forall a b exists u v w t. u+t = 1 & ua = vb & wa = tb We consider only domain. We assume we have the Bezout condition: given a, b we can find g,a1,b1,c,d s.t. a = g a1 b = g b1 1 = c a1 + d b1 We try then u = d b1 t = c a1 We should find v such that a d b1 = b v this simplifies to g a1 d b1 = g b1 v and we can take v = a1 d Similarly we can take w = b1 c We have shown that Bezout domain -> Prufer domain. instance (BezoutDomain a, Eq a) => PruferDomain a where -} -- | Proof that all Bezout domains are Prufer domains. calcUVW_B :: (BezoutDomain a, Eq a) => a -> a -> (a,a,a) calcUVW_B a b | a == zero = (one,zero,zero) | b == zero = (zero,zero,zero) | otherwise = fromUVWTtoUVW (u,v,w,t) where -- Compute g, a1 and b1 such that: -- a = g*a1 -- b = g*b1 (g,[_,_],[a1,b1]) = toPrincipal (Id [a,b]) -- Compute c and d such that: -- 1 = a1*c + a2*d (_,[c,d],_) = toPrincipal (Id [a1,b1]) u = d <*> b1 t = c <*> a1 v = d <*> a1 w = c <*> b1 ------------------------------------------------------------------------------- -- Coherence -- | Compute a principal localization matrix for an ideal in a Prufer domain. computePLM_PD :: (PruferDomain a, Eq a) => Ideal a -> Matrix a computePLM_PD (Id [_]) = matrix [[one]] computePLM_PD (Id [a,b]) = let (u,v,w,t) = calcUVWT b a in M [ Vec [u,v], Vec [w,t]] computePLM_PD (Id xs) = matrix a where -- Use induction hypothesis to construct a matrix for n-1: x_is = init xs b = unMVec $ computePLM_PD (Id x_is) m = length b - 1 -- Let s_i be b_ii: s_is = [ (b !! i) !! i | i <- [0..m]] -- Take out x_n: x_n = last xs -- Compute (u_i, v_i, w_i, t_i) for : uvwt_i = [ calcUVWT x_n x_i | x_i <- x_is ] -- Take out all u, v, w, and t: u_is = [ u_i | (u_i,_,_,_) <- uvwt_i ] v_is = [ v_i | (_,v_i,_,_) <- uvwt_i ] w_js = [ w_i | (_,_,w_i,_) <- uvwt_i ] t_is = [ t_i | (_,_,_,t_i) <- uvwt_i ] -- COMPUTE a_ij for 1 <= i,j < n -- i = row -- j = column a_ij = [ [ if i == j then (s_is !! i) <*> (u_is !! i) else (u_is !! i) <*> (b !! i !! j) | j <- [0..m] ] | i <- [0..m] ] -- COMPUTE a_nn a_nn = sumRing $ zipWith (<*>) s_is t_is -- COMPUTE a_ni for 1 <= i < n -- THIS IS THE LAST ROW a_ni = [ sumRing [ (b !! j !! i) <*> (w_js !! j) | j <- [0..m] ] | i <- [0..m] ] -- COMPUTE a_in for 1 <= i < n -- THIS IS THE LAST COLUMN a_in = [ (s_is !! i) <*> (v_is !! i) | i <- [0..m] ] -- ASSEMBLE EVERYTHING a = [ x ++ [y] | (x,y) <- zip a_ij a_in ] ++ [a_ni ++ [a_nn]] -- | Ideal inversion. Given I compute J such that IJ is principal. -- Uses the principal localization matrix for the ideal. invertIdeal :: (PruferDomain a, Eq a) => Ideal a -> Ideal a invertIdeal xs = let a = unMVec $ computePLM_PD xs -- Pick out the first column a_njs = [ head (a !! j) | j <- [0..length a - 1]] in Id a_njs -- | Compute the intersection of I and J by: -- -- (I \\cap J)(I + J) = IJ => (I \\cap J)(I + J)(I + J)' = IJ(I + J)' -- intersectionPDWitness :: (PruferDomain a, Eq a) => Ideal a -> Ideal a -> (Ideal a,[[a]],[[a]]) intersectionPDWitness (Id is) (Id js) = (int,wis,wjs) where lj = length js li = length is ij = Id (is ++ js) plm = computePLM_PD ij as = take li $ unMVec $ transpose plm as' = drop li $ unMVec $ transpose plm int = Id $ concat [ map (j <*>) a | j <- js , a <- as ] wis = concat [ [ addZ i li a | a <- as ] | as <- as', i <- [0..li-1] ] wjs = [ addZ i lj a | i <- [0..lj-1], a <- concat as ] addZ n l x = replicate n zero ++ x : replicate (l-n-1) zero intersectionPD :: (PruferDomain a, Eq a) => Ideal a -> Ideal a -> Ideal a intersectionPD i j = fst3 (intersectionPDWitness i j) where fst3 (x,_,_) = x -- | Coherence of Prufer domains. solvePD :: (PruferDomain a, Eq a) => Vector a -> Matrix a solvePD x = solveWithIntersection x intersectionPDWitness -- instance (PruferDomain a, Eq a) => Coherent a where -- solve = solvePD