{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} -- | Parser for Bnf module Data.Cfg.Bnf.Parser(parse) where import qualified Data.Map as M import Data.Cfg.Bnf.Scanner(scan) import Data.Cfg.Bnf.Syntax import Data.Cfg.Bnf.Token import Data.Cfg.Cfg(Production, V(..), Vs) import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts import Control.Applicative(Applicative(..)) -- parser produced by Happy Version 1.19.4 newtype HappyAbsSyn = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn4 :: (Grammar String String) -> (HappyAbsSyn ) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn ) -> (Grammar String String) happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} happyIn5 :: ([Production String String]) -> (HappyAbsSyn ) happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn ) -> ([Production String String]) happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut5 #-} happyIn6 :: ([Production String String]) -> (HappyAbsSyn ) happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn ) -> ([Production String String]) happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut6 #-} happyIn7 :: ([Vs String String]) -> (HappyAbsSyn ) happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn ) -> ([Vs String String]) happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut7 #-} happyIn8 :: ([Vs String String]) -> (HappyAbsSyn ) happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn ) -> ([Vs String String]) happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut8 #-} happyIn9 :: (Vs String String) -> (HappyAbsSyn ) happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn9 #-} happyOut9 :: (HappyAbsSyn ) -> (Vs String String) happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut9 #-} happyIn10 :: (Vs String String) -> (HappyAbsSyn ) happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn10 #-} happyOut10 :: (HappyAbsSyn ) -> (Vs String String) happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut10 #-} happyIn11 :: (V String String) -> (HappyAbsSyn ) happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn11 #-} happyOut11 :: (HappyAbsSyn ) -> (V String String) happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut11 #-} happyInTok :: (Token) -> (HappyAbsSyn ) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn ) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x11\x00\x11\x00\x11\x00\x00\x00\x10\x00\x0c\x00\x00\x00\x00\x00\x0f\x00\x0e\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x05\x00\x0d\x00\x09\x00\x00\x00\x00\x00\x00\x00\xfe\xff\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\xfe\xff\xfc\xff\x00\x00\x00\x00\xf5\xff\xfd\xff\x00\x00\xfa\xff\xf8\xff\xf7\xff\xf6\xff\xf3\xff\xf4\xff\xf5\xff\xfb\xff\xf9\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x03\x00\x04\x00\x05\x00\x06\x00\x00\x00\x01\x00\x02\x00\x02\x00\x07\x00\x04\x00\x02\x00\x05\x00\x06\x00\x01\x00\x02\x00\x01\x00\x03\x00\x06\x00\x02\x00\xff\xff\x05\x00\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x05\x00\x02\x00\x03\x00\x0e\x00\x0c\x00\x0f\x00\x07\x00\x11\x00\x0b\x00\x02\x00\x03\x00\x11\x00\x10\x00\xff\xff\x05\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 12) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12) ] happy_n_terms = 7 :: Int happy_n_nonterms = 8 :: Int happyReduce_1 = happySpecReduce_1 0# happyReduction_1 happyReduction_1 happy_x_1 = case happyOut5 happy_x_1 of { happy_var_1 -> happyIn4 (Grammar happy_var_1 )} happyReduce_2 = happySpecReduce_2 1# happyReduction_2 happyReduction_2 happy_x_2 happy_x_1 = case happyOut5 happy_x_1 of { happy_var_1 -> case happyOut6 happy_x_2 of { happy_var_2 -> happyIn5 (happy_var_1 ++ happy_var_2 )}} happyReduce_3 = happySpecReduce_1 1# happyReduction_3 happyReduction_3 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> happyIn5 (happy_var_1 )} happyReduce_4 = happyReduce 4# 2# happyReduction_4 happyReduction_4 (happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_1 of { (Token LOWER_IDENTIFIER happy_var_1) -> case happyOut7 happy_x_3 of { happy_var_3 -> happyIn6 ([ (happy_var_1, alt) | alt <- happy_var_3 ] ) `HappyStk` happyRest}} happyReduce_5 = happySpecReduce_1 3# happyReduction_5 happyReduction_5 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> happyIn7 (happy_var_1 )} happyReduce_6 = happySpecReduce_3 4# happyReduction_6 happyReduction_6 happy_x_3 happy_x_2 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> case happyOut9 happy_x_3 of { happy_var_3 -> happyIn8 (happy_var_1 ++ [ happy_var_3 ] )}} happyReduce_7 = happySpecReduce_1 4# happyReduction_7 happyReduction_7 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> happyIn8 ([ happy_var_1 ] )} happyReduce_8 = happySpecReduce_1 5# happyReduction_8 happyReduction_8 happy_x_1 = case happyOut10 happy_x_1 of { happy_var_1 -> happyIn9 (happy_var_1 )} happyReduce_9 = happySpecReduce_2 6# happyReduction_9 happyReduction_9 happy_x_2 happy_x_1 = case happyOut10 happy_x_1 of { happy_var_1 -> case happyOut11 happy_x_2 of { happy_var_2 -> happyIn10 (happy_var_1 ++ [ happy_var_2 ] )}} happyReduce_10 = happySpecReduce_0 6# happyReduction_10 happyReduction_10 = happyIn10 ([] ) happyReduce_11 = happySpecReduce_1 7# happyReduction_11 happyReduction_11 happy_x_1 = case happyOutTok happy_x_1 of { (Token UPPER_IDENTIFIER happy_var_1) -> happyIn11 (T happy_var_1 )} happyReduce_12 = happySpecReduce_1 7# happyReduction_12 happyReduction_12 happy_x_1 = case happyOutTok happy_x_1 of { (Token LOWER_IDENTIFIER happy_var_1) -> happyIn11 (NT happy_var_1 )} happyNewToken action sts stk [] = happyDoAction 6# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { Token FULL_STOP happy_dollar_dollar -> cont 1#; Token LOWER_IDENTIFIER happy_dollar_dollar -> cont 2#; Token OR happy_dollar_dollar -> cont 3#; Token UPPER_IDENTIFIER happy_dollar_dollar -> cont 4#; Token YIELDS happy_dollar_dollar -> cont 5#; _ -> happyError' (tk:tks) } happyError_ 6# tk tks = happyError' tks happyError_ _ tk tks = happyError' (tk:tks) newtype HappyIdentity a = HappyIdentity a happyIdentity = HappyIdentity happyRunIdentity (HappyIdentity a) = a instance Functor HappyIdentity where fmap f (HappyIdentity a) = HappyIdentity (f a) instance Applicative HappyIdentity where pure = return a <*> b = (fmap id a) <*> b instance Monad HappyIdentity where return = HappyIdentity (HappyIdentity p) >>= q = q p happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b happyThen = (>>=) happyReturn :: () => a -> HappyIdentity a happyReturn = (return) happyThen1 m k tks = (>>=) m (\a -> k a tks) happyReturn1 :: () => a -> b -> HappyIdentity a happyReturn1 = \a tks -> (return) a happyError' :: () => [(Token)] -> HappyIdentity a happyError' = HappyIdentity . parseError parseTokens tks = happyRunIdentity happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x)) happySeq = happyDontSeq parseError :: [Token] -> a parseError ts = error $ "parseError at: " ++ show ts -- | Parses Bnf source into a 'Grammar'. parse :: String -> Grammar String String parse = parseTokens . scan -- | Parses a list of 'Token's into a 'Grammar'. parseTokens :: [Token] -> Grammar String String {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.