[![Build Status](https://travis-ci.com/Copilot-Language/copilot.svg?branch=master)](https://app.travis-ci.com/github/Copilot-Language/copilot) # Copilot Theorem Highly automated proof techniques are a necessary step for the widespread adoption of formal methods in the software industry. Moreover, it could provide a partial answer to one of its main issues, which is scalability. *copilot-theorem* is a Copilot library aimed at checking automatically some safety properties on Copilot programs. It includes: * A general interface for *provers* and a *proof scheme* mechanism aimed at splitting the task of proving a complex property into checking a sequence of smaller lemmas. * A prover implementing basic **k-induction** model checking [1], useful for proving basic k-inductive properties and for pedagogical purposes. * A prover producing native inputs for the *Kind2* model checker, developed at the University of Iowa. The latter uses both the *k-induction algorithm* extended with *path compression* and *structural abstraction* [2] and the **IC3 algorithm** with counterexample generalization based on *approximate quantifier elimination* [3]. ## A Tutorial ### Installation instructions *copilot-theorem* needs the following dependencies to be installed: * The *copilot-core* and *copilot-prettyprinter* Haskell libraries * The *Yices2* SMT-solver: `yices-smt2` must be in your `$PATH` * The *Z3* SMT-solver: `z3` must be in your `$PATH` * The *Kind2* model checker: `kind2` must be in your `$PATH` To build it, just install the Copilot library as described in the top-level README. ### First steps *copilot-theorem* is aimed at checking **safety properties** on Copilot programs. Intuitively, a safety property is a property that expresses the idea that *nothing bad can happen*. In particular, any invalid safety property can be disproved by a finite execution trace of the program called a **counterexample**. Safety properties are often opposed to **liveness** properties, which express the idea that *something good will eventually happen*. The latter is out of the scope of *copilot-theorem*. Safety properties are simply expressed with standard boolean streams. In addition to triggers and observers declarations, it is possible to bind a boolean stream to a property name with the `prop` construct in the specification. For instance, here is a straightforward specification declaring one property: ```haskell spec :: Spec spec = do void $ prop "gt0" (forAll $ x > 0) where x = [1] ++ (1 + x) ``` Let's say we want to check that `gt0` holds. For this, we use the `prove :: Copilot.Core.Spec.Spec -> String -> UProof -> IO Bool` function exported by `Copilot.Theorem`. This function takes three arguments: * A reified Copilot.Language.Spec. * The name of the proposition we want to check. * A strategy to prove the proposition. In this case, the proposition is simple enough so that we can check it directly by k-induction using `kind2Prover`. Therefore we can just write: ```haskell main = do spec' <- reify spec prove spec' "gt0" (tell [Check $ kind2Prover def]) ``` where `kind2Prover def` stands for the *Kind2 prover* with the default configuration. #### The Kind2 prover The *Kind2* prover uses the model checker with the same name, from the University of Iowa. It translates the Copilot specification into a *modular transition system* (the Kind2 native format) and then calls the `kind2` executable. It is provided by the `Copilot.Theorem.Kind2` module, which exports a `kind2Prover :: Options -> Prover` where the `Options` type is defined as ```haskell data Options = Options { bmcMax :: Int } ``` and where `bmcMax` corresponds to the `--bmc_max` option of *kind2* and is equivalent to the `maxK` option of the K-Induction prover. Its default value is 0, which stands for infinity. ### Some examples Some examples are in the *examples* folder, including: * `Incr.hs` : a straightforward example in the style of the previous one. * `Grey.hs` : an example where two different implementations of a periodical counter are shown to be equivalent. * `BoyerMoore.hs` : a certified version of the majority vote algorithm introduced in the Copilot tutorial. * `SerialBoyerMoore.hs` : a *serial* version of the first step of the *Boyer Moore algorithm*, where a new element is added to the list and the majority candidate is updated at each clock tick. See the section *Limitations related to the SMT solvers* for an analysis of this example. ## Technical details ### An introduction to SMT-based model checking An introduction to the model-checking techniques used by *copilot-theorem* can be found in the `doc` folder of this repository. It consists of a self-sufficient set of slides. You can find some additional readings in the *References* section. ### Architecture of copilot-theorem #### An overview of the proving process Each prover first translates the Copilot specification into an intermediate representation best suited for model checking. Two representations are available: * The **IL** format: a Copilot program is translated into a list of quantifier-free equations over integer sequences, implicitly universally quantified by a free variable *n*. Each sequence roughly corresponds to a stream. This format is the one used in G. Hagen's thesis [4]. Several provers work with this format. * The **TransSys** format: a Copilot program is *flattened* and translated into a *state transition system* [1]. Moreover, in order to keep some structure in this representation, the variables of this system are grouped by *nodes*, each node exporting and importing variables. The *Kind2 prover* uses this format, which can be easily translated into the native format. For each of these formats, there is a folder in `src/Copilot/Theorem` which contains at least * `Spec.hs` where the format is defined * `PrettyPrint.hs` for pretty printing (useful for debugging) * `Translate.hs` where the translation process from `Core.Spec` is defined. ##### An example The following program: ```haskell spec = do void $ prop "pos" (forAll $ fib > 0) where fib :: Stream Word64 fib = [1, 1] ++ (fib + drop 1 fib) ``` can be translated into this IL specification: ``` SEQUENCES s0 : Int MODEL INIT s0[0] = 1 s0[1] = 1 MODEL REC s0[n + 2] = s0[n] + s0[n + 1] PROPERTIES 'pos' : s0[n] > 0 ``` or this modular transition system: ``` NODE 's0' DEPENDS ON [] DEFINES out : Int = 1 -> pre out.1 out.1 : Int = 1 -> pre out.2 out.2 : Int = (out) + (out.1) NODE 'prop-pos' DEPENDS ON [s0] IMPORTS (s0 : out) as 's0.out' (s0 : out.1) as 's0.out.1' (s0 : out.2) as 's0.out.2' DEFINES out : Bool = (s0.out) > (0) NODE 'top' DEPENDS ON [prop-pos, s0] IMPORTS (prop-pos : out) as 'pos' (s0 : out) as 's0.out' (s0 : out.1) as 's0.out.1' (s0 : out.2) as 's0.out.2' PROPS 'pos' is (top : pos) ``` Note that the names of the streams are lost in the Copilot *reification process* [7] and so we have no way to keep them. #### Types In these three formats, GADTs are used to statically ensure a part of the type-correctness of the specification, in the same spirit as in other Copilot libraries. *copilot-theorem* works with only three types, `Integer`, `Real` and `Bool`, all of which SMT-Lib can handle. *copilot-theorem* works with *pure* reals and integers. Thus, it is unsafe in the sense it ignores integer overflow problems and the loss of precision due to floating point arithmetic. #### The Kind2 prover The *Kind2 prover* first translates the Copilot specification into a *modular transition system*. Then, a chain of transformations is applied to this system (for instance, in order to remove dependency cycles among nodes). After this, the system is translated into the *Kind2 native format* and the `kind2` executable is launched. The following sections will bring more details about this process. ##### Modular transition systems Let's look at the definition of a *modular transition system*, in the `TransSys.Spec` module: ```haskell type NodeId = String type PropId = String data Spec = Spec { specNodes :: [Node] , specTopNodeId :: NodeId , specProps :: Map PropId ExtVar } data Node = Node { nodeId :: NodeId , nodeDependencies :: [NodeId] , nodeLocalVars :: Map Var LVarDescr , nodeImportedVars :: Bimap Var ExtVar , nodeConstrs :: [Expr Bool] } data Var = Var {varName :: String} deriving (Eq, Show, Ord) data ExtVar = ExtVar {extVarNode :: NodeId, extVarLocalPart :: Var } deriving (Eq, Ord) data VarDescr = forall t . VarDescr { varType :: Type t , varDef :: VarDef t } data VarDef t = Pre t Var | Expr (Expr t) | Constrs [Expr Bool] data Expr t where Const :: Type t -> t -> Expr t Ite :: Type t -> Expr Bool -> Expr t -> Expr t -> Expr t Op1 :: Type t -> Op1 x t -> Expr x -> Expr t Op2 :: Type t -> Op2 x y t -> Expr x -> Expr y -> Expr t VarE :: Type t -> Var -> Expr t ``` A transition system (`Spec` type) is mostly made of a list of nodes. A *node* is just a set of variables living in a local namespace and corresponding to the `Var` type. The `ExtVar` type is used to identify a variable in the global namespace by specifying both a node name and a variable. A node contains two types of variables: * Some variables imported from other nodes. The structure `nodeImportedVars` binds each imported variable to its local name. The set of nodes from which a node imports some variables is stored in the `nodeDependencies` field. * Some locally defined variables contained in the `nodeLocalVars` field. Such a variable can be - Defined as the previous value of another variable (`Pre` constructor of `VarDef`) - Defined by an expression involving other variables (`Expr` constructor) - Defined implicitly by a set of constraints (`Constrs` constructor) ##### The translation process First, a Copilot specification is translated into a modular transition system. This process is defined in the `TransSys.Translate` module. Each stream is associated with a node. The most significant task of this translation process is to *flatten* the Copilot specification so the value of all streams at time *n* only depends on the values of all the streams at time *n - 1*, which is not the case in the `Fib` example shown earlier. This is done by a simple program transformation which turns this: ```haskell fib = [1, 1] ++ (fib + drop 1 fib) ``` into this: ```haskell fib0 = [1] ++ fib1 fib1 = [1] ++ (fib1 + fib0) ``` and then into the node ``` NODE 'fib' DEPENDS ON [] DEFINES out : Int = 1 -> pre out.1 out.1 : Int = 1 -> pre out.2 out.2 : Int = (out) + (out.1) ``` Once again, this flattening process is made easier by the fact that the `++` operator only occurs leftmost in a stream definition after the reification process. ##### Some transformations over modular transition systems The transition system obtained by the `TransSys.Translate` module is perfectly consistent. However, it can't be directly translated into the *Kind2 native file format*. Indeed, it is natural to bind each node to a predicate but the Kind2 file format requires that each predicate only uses previously defined predicates. However, some nodes in our transition system could be mutually recursive. Therefore, the goal of the `removeCycles :: Spec -> Spec` function, defined in `TransSys.Transform`, is to remove such dependency cycles. This function relies on the `mergeNodes :: [NodeId] -> Spec -> Spec` function, whose signature is self-explicit. The latter solves name conflicts by using the `Misc.Renaming` monad. Some code complexity has been added so variable names remain as clear as possible after merging two nodes. The function `removeCycles` computes the strongly connected components of the dependency graph and merge each one into a single node. The complexity of this process is high in the worst case (the square of the total size of the system times the size of the biggest node) but good in practice as few nodes are to be merged in most practical cases. After the cycles have been removed, it is useful to apply another transformation which makes the translation from `TransSys.Spec` to `Kind2.AST` easier. This transformation is implemented in the `complete` function. In a nutshell, it transforms a system such that: * If a node depends on another, it imports *all* its variables. * The dependency graph is transitive, that is if *A* depends of *B* which depends of *C* then *A* depends on *C*. After this transformation, the translation from `TransSys.Spec` to `Kind2.AST` is almost only a matter of syntax. ###### Bonus track Thanks to the `mergeNodes` function, we can get for free the function ```haskell inline :: Spec -> Spec inline spec = mergeNodes [nodeId n | n <- specNodes spec] spec ``` which discards all the structure of a *modular transition system* and turns it into a *non-modular transition system* with only one node. In fact, when translating a Copilot specification to a Kind2 file, two styles are available: the `Kind2.toKind2` function takes a `Style` argument which can take the value `Inlined` or `Modular`. The only difference is that in the first case, a call to `removeCycles` is replaced by a call to `inline`. ### Limitations of copilot-theorem Now, we will discuss some limitations of the *copilot-theorem* tool. These limitations are split into two categories: limitations related to the Copilot language itself and its implementation, and limitations related to the model-checking techniques we are using. #### Limitations related to Copilot implementation The reification process used to build the `Core.Spec` object loses information about the structure of the original Copilot program. In fact, a stream is kept in the reified program only if it is recursively defined. Otherwise, all its occurrences will be inlined. Moreover, let's look at the `intCounter` function defined in the example `Grey.hs`: ```haskell intCounter :: Stream Bool -> Stream Word64 intCounter reset = time where time = if reset then 0 else [0] ++ if time == 3 then 0 else time + 1 ``` If *n* counters are created with this function, the same code will be inlined *n* times and the structure of the original code will be lost. There are many problems with this: * It makes some optimizations of the model-checking based on a static analysis of the program more difficult (for instance *structural abstraction* - see [2]). * It makes the inputs given to the SMT solvers larger and repetitive. We can't rewrite the Copilot reification process in order to avoid these inconveniences as this information is lost by GHC itself before it occurs. The only solution we can see would be to use *Template Haskell* to generate automatically some structural annotations, which might not be worth the dirt introduced. #### Limitations related to the model-checking techniques used ##### Limitations of the IC3 algorithm The IC3 algorithm was shown to be a very powerful tool for hardware certification. However, the problems encountered when verifying software are much more complex. For now, very few non-inductive properties can be proved by *Kind2* when basic integer arithmetic is involved. The critical point of the IC3 algorithm is the counterexample generalization and the lemma tightening parts of it. When encountering a *counterexample to the inductiveness* (CTI) for a property, these techniques are used to find a lemma discarding it which is general enough so that all CTIs can be discarded in a finite number of steps. The lemmas found by the current version of *Kind2* are often too weak. Some suggestions to enhance this are presented in [1]. We hope some progress will be made in this area in the near future. A workaround to this problem would be to write an interactive mode where the user is invited to provide some additional lemmas when automatic techniques fail. Another solution would be to make the properties being checked quasi-inductive by hand. In this case, *copilot-theorem* is still a useful tool (especially for finding bugs) but the verification of a program can be long and requires a high level of technical knowledge. ##### Limitations related to the SMT solvers The use of SMT solvers introduces two kinds of limitations: 1. We are limited by the computing power needed by the SMT solvers 2. SMT solvers can't handle quantifiers efficiently Let's consider the first point. SMT solving is costly and its performances are sometimes unpredictable. For instance, when running the `SerialBoyerMoore` example with the *k-induction prover*, Yices2 does not terminate. However, the *Z3* SMT solver used by *Kind2* solves the problem instantaneously. Note that this performance gap is not due to the use of the IC3 algorithm because the property to check is inductive. It could be related to the fact the SMT problem produced by the *k-induction prover* uses uninterpreted functions for encoding streams instead of simple integer variables, which is the case when the Copilot program is translated into a transition system. However, this wouldn't explain why the *k-induction prover* still terminates instantaneously on the `BoyerMoore` example, which seems not simpler by far. The second point keeps you from expressing or proving some properties universally quantified over a stream or a constant. Sometimes, this is still possible. For instance, in the `Grey` example, as we check a property like `intCounter reset == greyCounter reset` with `reset` an external stream (therefore totally unconstrained), we kind of show a universally quantified property. This fact could be used to enhance the proof scheme system (see the *Future work* section). However, this trick is not always possible. For instance, in the `SerialBoyerMoore` example, the property being checked should be quantified over all integer constants. Here, we can't just introduce an arbitrary constant stream because it is the quantified property that is inductive and not the property specialized for a given constant stream. That's why we have no other solution than replacing universal quantification with *bounded* universal quantification, assuming all the elements of the input stream are in the finite list `allowed` and using the function `forAllCst`: ```haskell conj :: [Stream Bool] -> Stream Bool conj = foldl (&&) true forAllCst ::(Typed a) => [a] -> (Stream a -> Stream Bool) -> Stream Bool forAllCst l f = conj $ map (f . constant) l ``` However, this solution isn't completely satisfying because the size of the property generated is proportional to the length of `allowed`. #### Some scalability issues A standard way to prove large programs is to rely on their logical structure, by writing a specification for each of their functions. This very natural approach is hard to follow in our case due to: * The difficulty to deal with universal quantification. * The lack of *true* functions in Copilot: the latter offers metaprogramming facilities but no concept of functions like *Lustre* does with its *nodes*). * The inlining policy of the reification process. This point is related to the previous one. Once again, *copilot-theorem* is still a very useful tool, especially for debugging purposes. However, we don't think it is adapted to write and check a complete specification for large-scale programs. ## Future work ### Missing features in the Kind2 prover These features are not currently provided due to the lack of important features in the Kind2 SMT solver. #### Displaying counterexamples Counterexamples are not displayed with the Kind2 prover because Kind2 doesn't support XML output of counterexamples. If the last feature is provided, it should be easy to implement displaying of counterexamples in *copilot-theorem*. For this, we recommend keeping some information about *observers* in `TransSys.Spec` and to add one variable per observer in the Kind2 output file. #### Bad handling of non-linear operators and external functions Non-linear Copilot operators and external functions are poorly handled because of the lack of support for uninterpreted functions in the Kind2 native format. A good way to handle these would be to use uninterpreted functions. With this solution, properties like ```haskell 2 * sin x + 1 <= 3 ``` with `x` any stream can't be proven but at least the following can be proved ```haskell let y = x in sin x == sin y ``` Currently, the *Kind2 prover* fails with the last example, as the results of unknown functions are turned into fresh unconstrained variables. ### Simple extensions The following extensions would be really simple to implement given the current architecture of Kind2. + If inductive proving of a property fails, giving the user a concrete CTI (*Counterexample To The Inductiveness*, see [1]). + Use Template Haskell to declare automatically some observers with the same names used in the original program. ### More advanced enhancements + Enhance the proof scheme system such that when proving a property depending on an arbitrary stream, it is possible to assume some specialized versions of this property for given values of the arbitrary stream. In other words, implementing a basic way to deal with universal quantification. + It could be useful to extend the Copilot language in a way it is possible to use annotations inside the Copilot code. For instance, we could - Declare assumptions and invariants next to the associated code instead of gathering all properties in a single place. - Declare a frequent code pattern that can be factorized in the transition problem (see the section about Copilot limitations) ## FAQ ### Why does the code related to transition systems look so complex? It is true that the code of `TransSys` is quite complex. In fact, it would be really straightforward to produce a flattened transition system and then a Kind2 file with just a single *top* predicate. In fact, It would be as easy as producing an *IL* specification. To be honest, I'm not sure producing a modular *Kind2* output is worth the complexity added. It's especially true at the time I write this in the sense that: * Each predicate introduced is used only one time (which is true because Copilot doesn't handle functions or parameterized streams like Lustre does and everything is inlined during the reification process). * A similar form of structure could be obtained from a flattened Kind2 native input file with some basic static analysis by producing a dependency graph between variables. * For now, the *Kind2* model-checker ignores these structures. However, the current code offers some nice transformation tools (node merging, `Renaming` monad...) which could be useful if you intend to write a tool for simplifying or factorizing transition systems. Moreover, it becomes easier to write local transformations on transition systems as name conflicts can be avoided more easily when introducing more variables, as there is one namespace per node. ## References 1. *An insight into SMT-based model checking techniques for formal software verification of synchronous dataflow programs*, talk, Jonathan Laurent (see the `doc` folder of this repository) 2. *Scaling up the formal verification of Lustre programs with SMT-based techniques*, G. Hagen, C. Tinelli 3. *SMT-based Unbounded Model Checking with IC3 and Approximate Quantifier Elimination*, C. Sticksel, C. Tinelli 4. *Verifying safety properties of Lustre programs: an SMT-based approach*, PhD thesis, G. Hagen 5. *Understanding IC3*, Aaron R. Bradley 6. *IC3: Where Monolithic and Incremental Meet*, F. Somenzi, A.R. Bradley 7. *Copilot: Monitoring Embedded Systems*, L. Pike, N. Wegmann, S. Niller