!      None -.;>FHMX CcoyaThe t monoid constrained to numbers which are greater than 1. This ensures that the group property of inversion holds: x  ( (1   x))  xcoyaThe  monoid. Its  semigroupM instance is a binary operation that distributes over multiplication, i.e:  x  ( y *  z)  ( x <>  y) * ( x <>  z)The  and  - instances simply lift the underlying type's.coyaA smart constructor for .coya !  ecoya  x   y  Coya (x "  y) coya x <> ( (1   x))  x coyaEquivalent to the # instance for . coyaEquivalent to the $ instance for .%      !"#$%&'()*+,-coya-0.1-1SfbRtFLbKj4hBdX1r3CgECoya CoyaGroup getCoyaGroupgetCoya coyaGroup $fMonoidCoya$fSemigroupCoya$fGroupCoyaGroup$fMonoidCoyaGroup$fSemigroupCoyaGroup$fEqCoya $fOrdCoya$fSemiringCoya $fRingCoya $fNumCoya$fFloatingCoya$fFractionalCoya $fRealCoya$fRealFloatCoya$fRealFracCoya$fStorableCoya $fPrimCoya $fShowCoya $fReadCoyabaseGHC.Base<> GHC.FloatexpGHC.Real/logghc-prim GHC.Classes==(semirings-0.3.1.2-6JsgtI1LNjC2TpBZyMwt2E Data.SemiringSemiringGHC.NumNummempty**Monoid Semigroup