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Abstract

We describe a term reduction system that enumerates all essentially different
executions possible for a cryptographic protocol. We call them the shapes of
the protocol. Naturally occurring protocols have only finitely many, indeed
very few shapes. Authentication and secrecy properties are easy to deter-
mine from them, as are attacks and anomalies. Our Cryptographic Protocols
Shapes Analyzer (cpsa) program is a direct implementation of the reduction
system described within, and the form of the reduction system is partially
determined by the implementation.



Chapter 1

Introduction

The Cryptographic Protocol Shapes Analyzer (cpsa) attempts to enumerate
all essentially different executions possible for a cryptographic protocol. We
call them the shapes of the protocol. Naturally occurring protocols have only
finitely many, indeed very few shapes. Authentication and secrecy properties
are easy to determine from them, as are attacks and anomalies.

The shapes analysis is performed within a pure Dolev-Yao model. The
cpsa program reads a sequence of problem descriptions, and prints the steps
it used to solve each problem. For each input problem, cpsa is given some
initial behavior, and it descovers what shapes are compatible with it. Nor-
mally, the initial behavior is from the point of view of one participant. The
analysis reveals what the other participants must have done, given the par-
ticipant’s view.

This document specifies the cpsa program using a term reduction system.
Chapter 2 describes message algebras as order-sorted quotient term algebras.
Chapter 3 presents an implementation-oriented view of strand spaces. Chap-
ter 4 details the model of the adversary. The formal definition of a partial
run of a protocol is called a skeleton, and is introduced in Chapter 5.

The term reduction systems used to specify the algorithm is presented
in Chapter 6, and the primitive reduction rules are in Chapter 7. The rules
used to transform terms called preskeletons into skeletons are in Chapter 8.

The algorithm used to model adversarial behavior is in Chapter 9. The
algorithms used to infer what else must have happened given a partial de-
scription of a run of a protocol as skeleton is in Chapters 10 and 11. Chap-
ters 13 and 12 find most general descriptions of cpsa answers—the shapes.
Finally, Chapter 14 assembles reduction rules into one system that specifies
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the cpsa program.
Appendix A describes an extension to Strand Space theory that models

passwords and related concepts. Appendix B details the sense in which a
protocol role can be viewed as an abstraction of a program. Appendix C
describes a formula in the language of order-sorted first-order logic for each
problem and its shapes found by cpsa. The formula is called a shape analysis
sentence. The formula is modeled by all skeletons that describe full runs of
a protocol when cpsa finds all the shapes for the problem.

cpsa’s search is based on a high-level algorithm that was claimed to
be complete, i.e. every shape can in fact be found in a finite number of
steps [5, 8]. Further theoretical work [10] showed classes of executions that
are not found by the algorithm, however it also showed that every omitted
execution requires an unnatural interpretation of a protocol’s roles. Hence
the algorithm is complete relative to natural role semantics. See [13, Ap-
pendix B] for more on omitted executions.

A cpsa release includes two other documents, the cpsa Design [12] and
the cpsa Primer [13]. The design document describes details of the cpsa
implementation that would clutter this one. It should be read by anyone
interesting in reading and modifying the source code. The cpsa Primer
provides an overview of cpsa, and is worth reading before this document is
approached.

1.1 Notation

A finite sequence is a function from an initial segment of the natural numbers.
The length of a sequence X is |X|, and sequence X = 〈X(0), . . . , X(n− 1)〉
for n = |X|. Alternatively, 〈x0, x1, . . . , xn−1〉 = x0 :: x1 :: . . . :: xn−1 :: 〈〉. If S
is a set, then S∗ is the set of finite sequences of S, and S+ is the non-empty
finite sequences of S. The concatenation of sequences X0 and X1 is X0

aX1.
The prefix of sequence X of length n is X † n.

Generally, when discussing terms, a lowercase Latin letter is used to de-
note a term, and an uppercase Latin letter is used to denote a set of terms
or a sequence of terms.
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Chapter 2

Order-Sorted Message Algebras

cpsa models a message by an equivalence class of terms over a signature. A
sort system is used to classify messages. cpsa depends on the sort system
to allow it to treat a variable that represents an asymmetric key differently
from a variable that represents an arbitrary message. In particular, cpsa uses
order-sorted quotient term algebras [6] for message algebras. This formalism
enables the use of well-known algorithms for unification and matching in the
presences of equations and sorts [2].

This paper makes no attempt to provide a general introduction to order-
sorted quotient term algebras. We use a message algebra called the Basic
Crypto Algebra (bca), which is the main algebra used by cpsa.

There are six bca sorts: mesg, the sort of all messages, skey, the sort
of symmetric keys, akey, the sort of asymmetric keys, name, the sort of
participant names, and text and data for ordinary values. Sort mesg is
sometimes written as > and the other sorts are called base sorts. All base
sorts are subsorts of mesg. The function symbols, or operations, used to
form terms are given by the signature in Figure 2.1.

Each variable x used to form a term has a unique sort s, written x : s.
Variable set X is an indexed set of sets of variables, Xs = {x | x : s}. For
bca, Xmesg, Xskey, Xakey, Xname, Xtext, and Xdata partition the set of
variables in X. By abuse of notation, at times, we write X for the set of
variables in X.

The Basic Crypto Quotient Term Algebra A generated by variable set X
is displayed in Figure 2.2. The union of the messages in A is set of terms
generated by X, and A partitions the set of terms into a set of equivalence
classes induced by the equations. Terms t0 and t1 are equivalent, written
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Sorts: name, text, data, skey, akey < mesg

Base sorts: name, text, data, skey, akey
Carried positions: • denotes a carried position.

{| • |}(·) : mesg×mesg→mesg Encryption
#(·) : mesg→mesg Hashing
(•, •) : mesg×mesg→mesg Pairing
“. . . ” : mesg Tag constants
K(·) : name→ akey Public key of name
(·)−1 : akey→ akey Inverse of key
ltk(·, ·) : name×name→ skey Long term key

Equation: (x−1)−1 ≈ x for x : akey

Figure 2.1: Basic Crypto Signature and Equation

Askey = {{x} | x ∈ Xskey} ∪ {{ltk(a, b)} | a ∈ Xname, b ∈ Xname}
Aakey = {{x−2n | n ∈ N} | x ∈ Xakey}

∪ {{x−2n−1 | n ∈ N} | x ∈ Xakey}
∪ {{K−2n

x | n ∈ N} | x ∈ Xname}
∪ {{K−2n−1

x | n ∈ N} | x ∈ Xname}
Aname = {{x} | x ∈ Xname}
Atext = {{x} | x ∈ Xtext}
Adata = {{x} | x ∈ Xdata}

B = Askey ∪ Aakey ∪ Aname ∪ Atext ∪ Adata

A0 = B ∪ {{x} | x ∈ Xmesg} ∪ {{x} | x is a tag constant }
An+1 = An ∪ {{(t0, t1) | t0 ∈ T0, t1 ∈ T1} | T0 ∈ An, T1 ∈ An}

∪ {{{|t0|}t1 | t0 ∈ T0, t1 ∈ T1} | T0 ∈ An, T1 ∈ An}
∪ {{#t | t ∈ T} | T ∈ An}

A = Amesg =
⋃
n∈NA

n

Figure 2.2: bca Messages A and Atoms B
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t0 ≡ t1, iff t0 ∈ T ∧ t1 ∈ T for some T ∈ A. The canonical representative
of a message is the t in {t′ | t′ ≡ t} with the fewest occurrences of the (·)−1

operation.
Keys, names, data, and texts in the algebra are called atoms and are

members of B. We write t : B iff {t′ | t′ ≡ t} ∈ B. Note that encryption
is defined with an encryption key of sort mesg. When the encryption key
is of sort akey this is meant to model asymmetric encryption: otherwise,
this models symmetric encryption. Note that even complex messages such
as encryptions can be used as encryption keys in the symmetric sense.

To find the decryption key associated with an encryption, one must ex-
clude the case in which the key is a variable of sort mesg, as there is no way
to determine if the encryption operation denotes symmetric or asymmetric
encryption. Therefore, the decryption key associated with encryption key t
is inv(t).

inv(t) =


invk(t) if t : akey;
undefined if t is a variable of sort mesg;
t otherwise.

An important property possessed by the algebra is that for all T ∈ A, if
there are any encryptions in T then all members of T are encryptions. As
a result, a message can be identified as representing an encryption and if it
is, decomposed into its plaintext and its decryption key. This property is a
consequence of the fact that equations relate atoms, not arbitrary messages.
A similar property holds for pairs and hashes. A hash is treated as a kind of
encryption in which the term that is hashed is the encryption key.

We write AX when it is important to identify the variable set X that
generates the algebra. Given two variable sets X and Y , a substitution is
an order-sorted map σ : X → AY such that σ(x) 6= x for only finitely many
elements of X. For a substitution σ, the domain is the set of variables
Dom(σ) = {x | σ(x) 6= x} and the range is the set Ran(σ) = {σ(x) |
x ∈ Dom(σ)}. Substitution σ0 is more general than σ1, written σ0 E σ1,
if there exists a substitution σ2 such that ∀x σ1(x) ≡ σ2(σ0(x)). Given a
substitution σ : X → AY , the unique homomorphism σ∗ : AX → AY induced
by σ is also denoted σ.

A position p is a finite sequence of natural numbers. The term in t that
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occurs at p, written t@ p, is:

t@ 〈〉 = t;
(t0, t1) @ i :: p = ti @ p for i ∈ {0, 1};
{|t0|}t1 @ i :: p = ti @ p for i ∈ {0, 1};
t−1 @ 0 :: p = t@ p.

A term t occurs in term t′ if t = t′ @ p for some p. A message T occurs
in message T ′ if the canonical representative of T occurs in the canonical
representative of T ′.

A carried term is one that can be extracted from a message reception
assuming plaintext is extractable from encryptions. The positions at which
term t is carried in t′ is carpos(t, t′), where

carpos(t, t′) =



{〈〉} if t′ ≡ t, else
{0 :: p | p ∈ carpos(t, t1)}

if t′ = {|t0|}t1 , else
{i :: p | i ∈ {0, 1}, p ∈ carpos(t, ti)}

if t′ = (t0, t1) else
∅ otherwise.

Term t carries t′ if carpos(t′, t) is not empty, and t′ v t when t′ is car-
ried by t. Note that for all terms t0, t1, t

′
0, t
′
1, if t0 ≡ t1 and t′0 ≡ t′1, then

carpos(t0, t
′
0) = carpos(t1, t

′
1). We write t′ vp t when p ∈ carpos(t′, t) and

t@ p ≡ t′.
In what follows, we will often conflate a term with the message of which

it is a member, and use lowercase letters to denote both.

6



Chapter 3

Strand Spaces and Bundles

When using strand space theory, one normally hypothesizes the existence of
a single global strand space. This is a very reasonable assumption for the-
oretical analysis, but from the point view of an implementer, it turns out
that it is better to assume there are many local strand spaces and the de-
sign specification task is to describe the relations between these local spaces.
Our reformulation of strand space notation provides an implementation ori-
ented way of describing the concept of a local strand space, and a direct
link between from algorithm specification to the data structures used in the
implementation.

A run of a protocol is viewed as an exchange of messages by a finite set
of local sessions of the protocol. Each local session is called a strand. The
behavior of a strand, its trace, is a sequence of messaging events. An event
is either a message transmission or a reception. Outbound message t ∈ AX

is written as +t, and inbound message t is written as −t. The set of traces
over AX is CX = (±AX)+. A message originates in a trace if it is carried by
some event and the first event in which it is carried is outbound. A message
is gained by a trace if it is carried by some event and the first event in which
it is carried is inbound. A message is acquired by a trace if it first occurs in
a reception event and is also carried by that event.

Abstractly, a strand space is a multiset of traces, but since we wish to
name each element, a strand space ΘX over algebra AX is defined to be a
sequence of traces in CX . A strand s is a member of the domain of ΘX , and
its trace is ΘX(s). In a strand space, the elements of the generator set X
denote atomic message elements, such as keys, and not composite messages,
such as encryptions and pairs. Therefore, the sort of every variable in X is
a base sort.
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Message events occur at nodes in a strand space. For each strand s, there
is a node for every event in Θ(s). The nodes of strand space Θ are {(s, i) |
s ∈ Dom(Θ), 0 ≤ i < |Θ(s)|}, the event at a node is evtΘ(s, i) = Θ(s)(i),
and the message at a node is msgΘ(s, i) = m such that evtΘ(s, i) = ±m.
Just as a position names a subterm within another term, a strand names a
trace within a strand space, and a node names an event in a strand space.
The relation ⇒ defined by {(s, i− 1)⇒ (s, i) | s ∈ Dom(Θ), 1 ≤ i < |Θ(s)|}
is called the strand succession relation.

A bundle in strand space Θ is a finite directed acyclic graph Υ(Θ,→),
where the vertices are the nodes of Θ, and an edge represents communica-
tion (→) or strand succession (⇒). For communication, if n0 → n1, then
there is a message t such that evtΘ(n0) = +t and evtΘ(n1) = −t. For each
reception node n1, there is a unique transmission node n0 with n0 → n1.

Each acyclic graph has a transitive irreflexive relation ≺ on its vertices.
The relation specifies the causal ordering of nodes in a bundle. An transitive
irreflexive binary relation is also called a strict partial order.

An atom uniquely originates in a bundle if it originates in the trace of
exactly one strand. An atom is non-originating in a bundle if it originates
on no strand, but each of its variables occurs in some strand’s trace.

In a run of a protocol, the behavior of each strand is constrained by a
role in a protocol. Adversarial strands are constrained by roles as are non-
adversarial strands. A protorole over AY is rY (C,N,U), where C ∈ CY , N ⊆
BY , and U ⊆ BY . The trace of the role is C, its non-origination assumptions
are N , and its unique origination assumptions are U . A protorole is a role
if (1) t ∈ N implies t is not carried in C, and all variables in N occur in C,
(2) t ∈ U implies t originates in C, (3) if variable x occurs in C then x is an
atom or it is acquired in C, and (4) the trace of a role may not match the
pattern 〈−t,+t, . . .〉. This is to ensure that listeners, which are introduced on
Page 13, cannot be confused with protocol constrained strands. A protocol
is a set of roles. Let Vars(P ) be the set of variables that occur in the traces
of the roles in protocol P .

A bundle Υ(ΘX ,→) is a run of protocol P if there is a role mapping
rl : ΘX → P that satisfies properties for each s ∈ Dom(ΘX). Assuming
rl(s) = rY (C,N,U) and X and Y share no variables, and let h = |ΘX(s)|, the
properties are (1) h ≤ |C|, (2) there is a homomorphism σ : AY → AX such
that σ◦C † h = ΘX(s), (3) Dom(σ) is the set of variables that occur in C †h,
(4) if the variables in t ∈ N occur in Dom(σ), then σ(t) is non-originating in
Υ(ΘX ,→), and (5) if t ∈ U originates at index i in C, and i < h, then σ(t)
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uniquely originates in Υ(ΘX ,→) at node (s, i). Origination assumptions in
bundles specified by roles are called inherited origination assumptions.
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Chapter 4

Adversary Model

A fixed set of penetrator roles encodes the adversary model associated with
a message algebra. For the Basic Crypto Algebra, there are eight roles. Each
role makes no origination assumptions, and the trace of each role is given
in Figure 4.1. The first line of the figure specifies many traces, one for each
base sort, and a trace for each tag.

A strand exhibits non-adversarial behavior when its role is not a pen-
etrator role. A non-adversarial strand is called a regular strand as is its
role.

The penetrator cannot use a non-originating atom to encrypt or decrypt a
message, because every key it uses must be carried in a message. Consider a
uniquely originating atom that originates on a regular strand. The penetrator
cannot make the atom using a create role, because the atom would originate
in more than one trace. Therefore, the penetrator can use a uniquely orig-
inating atom to encrypt or decrypt a message only if it is transmitted by a
regular strand unprotected by encryption.

Create(z : B) 〈+z〉 〈+“. . . ”〉
Pair(x, y : >) 〈−x,−y,+(x, y)〉 〈−(x, y),+x,+y〉
Encrypt(x, y : >) 〈−x,−y,+{|x|}y〉 〈−{|x|}y,− inv(y),+x〉
Hash(x : >) 〈−x,+#x〉

Figure 4.1: Basic Crypto Algebra Penetrator Role Traces
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Chapter 5

Skeletons

The details of penetrator behavior are abstracted away when performing
protocol analysis. The abstracted description of a bundle is called a realized
skeleton, which is defined using a protoskeleton. A protoskeleton over AX is
kX(rl , P,ΘX ,≺, N, U), where rl : Dom(ΘX) → P is a role map, the sets X
and Vars(P ) are disjoint, ΘX is a sequence of traces in CX , ≺ is a relation on
the nodes in ΘX , N ⊆ BX are its non-origination assumptions, and U ⊆ BX

are its unique origination assumptions. Unlike a strand space, the sort of a
variable in X need not be a base sort.

Assume the strands in bundle Υ(ΘX ,→) have been permuted so that
regular strands precede penetrator strands in sequence ΘX , and rl demon-
strates the bundle is a run of protocol P . Let P ′ be P without penetrator
roles. Skeleton kX(rl ′, P ′,Θ′X ,≺, N, U) realizes the bundle if rl ′ and Θ′X are
the truncations of rl and ΘX respectively that omit penetrator strands from
their domains, ≺ is the transitive irreflexive relation associated with the
bundle without penetrator nodes, N is the set of non-originating atoms with
variables that occur in Θ′X , and U is the set of atoms that uniquely originate
and are carried by some regular event.

A protoskeleton kX(rl , P,ΘX ,≺, N, U) is a preskeleton if the following
properties hold.

1. Sequence rl demonstrates that the strands in Dom(ΘX) satisfy the
conditions for being a part of a run of protocol P .

2. Relation ≺ is transitive, irreflexive, and includes the strand succession
relation (⇒).
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3. If n ≺ n′, then either n ⇒ n′, evtΘX (n) = +t and evtΘX (n′) = −t′, or
n ≺ n′′ ≺ n′ for some n′′.

4. Each atom in N is carried by no event, and each variable in the atom
occurs in some event.

5. Each atom in U is carried by some event.

6. N includes the non-originating atoms inherited from roles via the role
map.

7. U includes the uniquely originating atoms inherited from roles via the
role map.

Let Ok(t) be the set of nodes at which t originates in preskeleton k,
and Gk(t) be the set of nodes at which t is gained in k. Preskeleton
kX(rl , P,ΘX ,≺, N, U) is a skeleton if each atom in U originates on at most
one strand, and the node of origination precedes each node that gains the
atom, i.e. for every t ∈ U , n0 ∈ Ok(t) and n1 ∈ Gk(t) implies n0 ≺ n1.

Let k0 = kX(rl0, P,Θ0,≺0, N0, U0) and k1 = kY (rl1, P,Θ1,≺1, N1, U1) be
preskeletons. There is a preskeleton homomorphism from k0 to k1 if φ and σ
are maps with the following properties:

1. φ maps strands of k0 into those of k1, and nodes as φ((s, i)) = (φ(s), i),
that is φ is in Dom(Θ0)→ Dom(Θ1);

2. σ : AX → AY is a message algebra homomorphism;

3. n ∈ nodes(Θ0) implies σ(evtΘ0(n)) = evtΘ1(φ(n));

4. n0 ≺0 n1 implies φ(n0) ≺1 φ(n1);

5. σ(N0) ⊆ N1;

6. σ(U0) ⊆ U1;

7. t ∈ U0 implies φ(Ok0(t)) ⊆ Ok1(σ(t)).

A homomorphism is strandwise injective if its strand map is injective.
Two preskeletons are isomorphic if they are related by strandwise injective
homomorphism in both directions. A homomorphism is nodewise isomorphic
if the strand map φ implies a bijection on nodes, and n0 ≺1 n1 implies
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φ−1(n0) ≺0 φ
−1(n1). A skeleton is realized if there is a nodewise isomorphic

homomorphism from it to a skeleton that realizes a bundle, and message
component of the homomorphism is injective.

Our formalism requires that every protocol include a listener role of the
form: lsn(x : >) = r(〈−x,+x〉, ∅, ∅). Instances of this role are sometimes used
to make penetrator derived messages visible in skeletons. We say skeleton k
realizes modulo listeners bundle Υ(Θ,→) if k realizes Υ(Θ′,→′) and Υ(Θ,→)
is the result of removing listener strands, and adjusting the communication
ordering → appropriately.

The set of bundles denoted by preskeleton k, [[k]], is:

[[k]] = {Υ | k φ,σ7−→ k′ and k′ realizes modulo listeners Υ}

A cpsa algorithm is complete if when given a preskeleton k, either the al-
gorithm diverges, or else it terminates and produces a finite set of realized
skeletons K, such that [[k]] =

⋃
k′∈K [[k′]].

5.1 Blanchet’s Simple Example Protocol

The following protocol is a simplified version of the Denning-Sacco key dis-
tribution protocol [4] due to Bruno Blanchet.

A→ B : {|{|s|}a−1|}b
B → A : {|d|}s

Symmetric key s is freshly generated, asymmetric keys a−1 and b−1 are un-
compromised, and the goal of the protocol is to keep data d secret. The
protocol was constructed with a known flaw for expository purposes.

This cpsa description of the protocol has an initiator and a responder
role.

init(a, b : A, s : S, d : D) = r(〈+{|{|s|}a−1|}b,−{|d|}s〉, ∅, ∅)
resp(a, b : A, s : S, d : D) = r(〈−{|{|s|}a−1|}b,+{|d|}s〉, ∅, ∅)

where we use A for sort akey, S for sort skey, and D for sort data to
save space. The algebra for the initiator role is generated from X, where
XA = {a, b}, XS = {s}, XD = {d}, Xtext = ∅, Xname = ∅, and X> = ∅.

An interesting point of view for analysis is to see if the authentication
goals of the initiator are met. To do so, we assume there was full length run
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of an initiator strand, and let cpsa determine what else must have happened.
Let variable set Y = a, b : A, s : S, d : D. The point-of-view skeleton is:

kY (〈init(a0, b0, s0, d0)〉, Role map
{init(a0, b0, s0, d0), resp(a1, b1, s1, d1)}, Protocol
〈〈+{|{|s|}a−1 |}b,−{|d|}s〉〉, Traces
∅, Node orderings
{a−1, b−1}, Non-origination
{s}) Unique origination

where the variable set that generates the algebra for the initiator and respon-
der roles have been renamed so as to avoid conflicts with the variable set Y
used by the skeleton.

The skeleton produced by cpsa for this problem follows. Notice that the
two strands agree on the key b used in the outermost encryption of their
first message, and indication that the authentication goals of the initiator
are met. See Figure 5.1 to see the structure of the shape.

kY (〈init(a0, b0, s0, d0), resp(a1, b1, s1, d1)〉, Role map
{init(a0, b0, s0, d0), resp(a1, b1, s1, d1)}, Protocol
〈〈+{|{|s|}a−1|}b,−{|d|}s〉,
〈−{|{|s|}a−1|}b,+{|d|}s〉〉,

Traces

{(0, 0) ≺ (1, 0), (1, 1) ≺ (0, 1)}, Node orderings
{a−1, b−1}, Non-origination
{s}) Unique origination

The homomorphism from the point-of-view skeleton to the shape is

(〈1〉, {a 7→ a, b 7→ b, s 7→ s, d 7→ d}).

An analysis of the authentication goals for the responder shows the flaw
built into the protocol. To do the analysis, assume there was a full length run
of a responder strand, and let cpsa determine what else must have happened.
In this case, the point-of-view skeleton is:

kY (〈resp(a0, b0, s0, d0)〉, Role map
{init(a0, b0, s0, d0), resp(a1, b1, s1, d1)}, Protocol
〈〈−{|{|s|}a−1|}b,+{|d|}s〉〉, Traces
∅, Node orderings
{a−1, b−1}, Non-origination
{s}) Unique origination
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Figure 5.1: Shapes for Blanchet’s Protocol

The shape generated by cpsa follows. An early indication of a problem
is the variable set for the shape has three asymmetric keys. Let variable set
Z = a, b, b′ : A, s : S, d : D. The shape is:

kZ(〈resp(a0, b0, s0, d0), init(a1, b1, s1, d1)〉, Role map
{init(a0, b0, s0, d0), resp(a1, b1, s1, d1)}, Protocol
〈〈−{|{|s|}a−1|}b,+{|d|}s〉,
〈+{|{|s|}a−1|}b′〉〉,

Traces
Note key is b′ not b!

{(1, 0) ≺ (0, 0)}, Node orderings
{a−1, b−1}, Non-origination
{s}) Unique origination

Notice that the two strands do not agree on the key used in the outermost
encryption of their first message—an authentication failure. To see that the
authentication failure leads to the failure to protect the secrecy of data d,
the protocol is analyzed using the following point-of-view:

kY (〈resp(a0, b0, s0, d0), lsn(x)〉, Role map
{init(a0, b0, s0, d0), resp(a1, b1, s1, d1), lsn(x)}, Protocol
〈〈−{|{|s|}a−1|}b,+{|d|}s〉, 〈−d,+d〉〉, Traces
{(0, 1) ≺ (1, 0), Node orderings
{a−1, b−1}, Non-origination
{s, d}) Unique origination

cpsa finds a shape that shows how data d is revealed to the adversary.

15



5.2 Dolev-Yao Example 1.3

The intended run of the protocol in the Dolev-Yao Example 1.3 is:

A→ B : {|{|m|}b, a|}b
B → A : {|{|m|}a, b|}a

assuming text m is freshly generated, and asymmetric keys a−1 and b−1 are
uncompromised.

The cpsa description of the protocol also has an initiator and a responder
role.

init(a, b : A,m : D) = r(〈+{|{|m|}b, a|}b,−{|{|m|}a, b|}a〉, ∅, ∅)
resp(a, b : A,m : >) = r(〈−{|{|m|}b, a|}b,+{|{|m|}a, b|}a〉, ∅, ∅)

An interesting point of view for analysis is to see if m is kept secret after
the initiator sends its message. Let variable set Z = a, b : A,m : D. The
initial scenario preskeleton is:

kZ(〈init(a0, b0,m0), lsn(x)〉, Role map
{init(a0, b0,m0), resp(a1, b1,m1), lsn(x)}, Protocol
〈〈+{|{|m|}b, a|}b〉, 〈−m〉〉, Traces
∅, Node orderings
{a−1, b−1}, Non-origination
{m}) Unique origination

where the variable set that generates the algebra for the initiator role has
been renamed so as to avoid conflicts with the variable set Z used by the
preskeleton.

cpsa determines m is not kept secret by producing the shape in Fig-
ure 5.2. The added strands in the shape are instances of responder roles.
The strands in the shape are:

〈+{|{|m|}b, a|}b〉
〈−m〉
〈−{|{|m|}b, a′|}b,+{|{|m|}a′ , b|}a′〉
〈−{|{|{|m|}b, a|}b, a′′|}b,+{|{|{|m|}b, a|}a′′ , b|}a′′〉

The non-origination and unique origination assumptions are as they are in
the initial scenario preskeleton. An interesting exercise left for the reader is
to produce a bundle that is realized by the shape.

16



init resp resp

• // •

��
•

��

•oo

•

��

•oo

•

Figure 5.2: Dolev-Yao Example 1.3 Shape

5.3 Exercise

Consider the following roles.

init(a, b : A) = r(〈+(a, b),−(b, a)〉, ∅, ∅)
resp(a, b : A) = r(〈−(a, b),+(b, a)〉, ∅, ∅)

Let X = x, y : A and k = kX(〈init(a, b), resp(a, b), resp(a, b)〉,
{init(a, b), resp(a, b)},
〈〈+(x, y),−(y, x)〉,
〈−(x, y),+(y, x)〉,
〈−(x, y),+(y, x)〉〉,

Node ordering in Figure 5.3,
∅,
∅)

What is [[k]]?
One member is shown in Figure 5.4.

5.4 External Syntax and Instances

The external syntax used by cpsa is a little different than what has been
described here. In the external syntax, the trace and the role associated
with a strand is specified by an instance. An instance is of the form i(r, h, σ),

17



init resp resp

•

��

,,// •

��

•

��
• •oo •ll

Figure 5.3: Exercise Skeleton

init 〈+(x, y),−(y, x)〉
resp 〈−(x, y),+(y, x)〉
resp 〈−(x, y),+(y, x)〉
pair 〈−(y, x),−(y, x),+((y, x), (y, x))〉
sep 〈−((y, x), (y, x)),+(y, x)〉

init resp resp pair sep

•

��

,,// •

��

•

��
•

--

• // •

��
•

��
• // •

��
• •oo

Figure 5.4: A Bundle Realized by the Example Skeleton

18



where r is a role, h specifies the length of a trace instantiated from the role,
and σ specifies how to instantiate the variables in the role to obtain the trace.
Thus when r = rY (C,N,U), the trace associated with i(r, h, σ) is σ ◦ C † h.
An instance is well-formed if 1 ≤ h ≤ |C|, and Dom(σ) is the set of variables
that occur in C † h.

In the external syntax, the role map and sequence of traces are replaced
by a sequence of instances. So for preskeleton kX(rl , P,ΘX ,≺, N, U), the
external syntax is kX(P, I,≺, N, U), where for each s ∈ Dom(Θx), I(s) =
i(r, h, σ), r = rl(s), and the trace of i(r, h, σ) is ΘX(s).
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Chapter 6

Algorithms as Reduction
Systems

Algorithms in this paper are specified as abstract reduction systems [1, Chap-
ter 2]. A reduction system is a pair (A,→), where reduction → is a binary
relation → ⊆ A × A. Element x ∈ A is a normal form if there is no y such
that x → y. The transitive closure of → is →+. The reflexive transitive
closure of → is →∗. A reduction is confluent if x→∗ y0 and x→∗ y1 implies
there is a z such that y0 →∗ z and y1 →∗ z. A reduction is terminating
if there are no infinite descending chains. A reduction is convergent if it is
confluent and terminating.

Let K be the set of preskeletons. Algorithms are specified as reduction
systems of the form (K,→), which are then used to specify a related setwise
reduction system of the form (2K,�). Setwise reduction systems are the
ones with the interesting normal forms and confluence properties. In a setwise
reduction system, reduction rewrites one element of a set to a set of elements.

Definition 6.1 (Setwise Reduction System). The setwise reduction system
of binary relation  ⊆ K× 2K is a reduction system (2K,�), where for each
K0 ∈ 2K, K0 � K1 if for some k0 ∈ K0, k0  K2, K1 = K2 ∪ (K0 \ {k0}),
and K1 6= K0.

The cpsa algorithm will be specified as a setwise term reduction system,
where the initial problem is given a singleton in 2K, and the answers computed
by an implementation of the algorithm are a normal form of the setwise
reduction relation �k defined in Chapter 14.
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In what follows the relation k  K is defined in terms of →⊆ K× K by
specifying {k}� K using →, so the  relation is not explicitly defined.

We regard sets of preskeletons as factored by isomorphism, where each
set has at most one representative of the equivalence class of isomorphic
preskeletons. The definition of isomorphic preskeletons is given on Page 12.

The cpsa Design [12] describes an extension of a message algebra signa-
ture that models the data structures used in the cpsa program. The terms
over the extended signature include ones that model preskeletons. Sets of
terms of sort preskeleton are the domain of our setwise reduction systems.
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Chapter 7

Primitive Preskeleton
Operators

The are four primitive operators on preskeletons used by cpsa to solve
authentication tests. Each operator is a partial map from preskeletons to
preskeletons.

Definition 7.1 (Substitution Operator). For order-sorted substitution σ : X →
AY , the operator Sσ is:

Sσ(kX(rl , P,ΘX ,≺, N, U)) =
kY (rl , P, s 7→ σ ◦ΘX(s),≺, σ(N), σ(U))

For k′ = Sσ(k), there is a homomorphism from k to k′ only if for all
t ∈ Uk, Ok(t) ⊆ Ok′(σ(t)). The structure preserving maps associated with
the homomorphism are φid and σ.

Definition 7.2 (Compression Operator). For distinct strands s and s′, op-
erator Cs,s′ compresses strand s into s′.

Cs,s′(kX(rl , P,ΘX ,≺, N, U)) =
kX(rl ◦ φ′s, P,ΘX ◦ φ′s,≺′, N, U)

where

φ′s(j) =

{
j + 1 if j ≥ s
j otherwise,
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relation ≺′ is the transitive closure of φs,s′(≺), and

φs,s′(j) =

{
φs(s

′) if j = s
φs(j) otherwise

φs(j) =

{
j − 1 if j > s
j otherwise.

The compression operator is only used when ΘX(s) is a prefix of ΘX(s′),
and when there is a homomorphism from k to Cs,s′(k). The structure pre-
serving maps associated with the homomorphism are φs,s′ and σid. Note that
the compression operator is defined only when relation ≺′ is asymmetric, and
that φs,s′ ◦ φ′s = φid.

Definition 7.3 (Ordering Enrichment Operator). Operator O applied to k
enriches ≺k by adding all elements implied by unique origination. That
is O(k) = kX(rl , P,ΘX ,≺′, N, U)), where k = kX(rl , P,ΘX ,≺, N, U) and
≺′= (≺ ∪{(n0, n1) | n0 ∈ O(k, t) ∧ n1 ∈ G(k, t)})∗.

The ordering enrichment operator is total and idempotent. The struc-
ture preserving maps associated with the operator’s homomorphism are φid

and σid, i.e. the homomorphism is an embedding.

Definition 7.4 (Augmentation Operator). For node n, role r, and trace C,
operator An,r,C is:

An,r,C(kX(rl , P,ΘX ,≺, N, U)) =
kX′(rl ar, P,ΘX(s) a C,≺′, N ′, U ′)

where X ′ is X extended to include the variables in C, ≺′ is the minimal
extension of ≺ such that (|ΘX | + 1, |C|) ≺′ n, N ′ is N extended with non-
origination assumptions inherited from r by C, and likewise for U ′.

The structure preserving maps associated with the augmentation opera-
tor’s homomorphism are φid and σid, i.e. the homomorphism is an embedding.
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Chapter 8

Reductions on Preskeletons

This chapter describes the algorithm used to transform a preskeleton into a
skeleton as a setwise term reduction system (K,�). Recall that the relation
k  K in Chapter 6 is defined in terms of→⊆ K×K by specifying {k}� K
using →. Additionally, when k = k(rl , P,Θ,≺, N, U), Uk is used to name U ,
and so forth for other components of k.

If a preskeleton k is not a skeleton, then it is either because some t ∈ Uk
actually originates at more than one node, or because for some t ∈ Uk,
there is a node n1 ∈ Gk(t), and a node n0 ∈ Ok(t) such that n0 ⊀k n1. A
preskeleton in which an atom assumed to be uniquely originating originates
more than once is simply expunged. The second obstruction is resolved by
enriching node orderings. A hulled preskeleton is a preskeleton in which every
uniquely originating atom originates at most once, but it may lack some node
orderings needed to be a skeleton.

Skeletons may contain “effectively equivalent” strands. After converting
preskeletons to skeletons, a preskeleton reduction system may remove effec-
tively equivalent strands using a process called thinning. A skeleton without
any effectively equivalent strands is called a thinned skeleton.

Definition 8.1 (Hulling Reduction). A non-hulled preskeleton k is expunged.

The setwise hulling reduction rule is {k} H−� {} when k is not hulled.

Definition 8.2 (Order Enrichment). Suppose hulled preskeleton k0 is not a
skeleton. Hulled preskeleton k0 reduces to skeleton k1 by order enrichment,

written k0
O−→ k1, iff k1 is the result of adding node orderings implied by

origination. That is, ≺k1 = (≺k0 ∪{(n0, n1) | n0 ∈ O(k0, t)∧n1 ∈ G(k0, t)})∗.
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There is a homomorphism from k0 to k1 that is an embedding. For the

setwise order enrichment reduction, {k0}
O−� {k1 | k0

O−→ k1} when k0 is a
hulled preskeleton that is not a skeleton.

The thinning operator Ts removes an effectively equivalent strand.

Definition 8.3 (Thinning). Two strands s and s′ in a skeleton k are effec-
tively equivalent if k with s removed and k with s′ removed are isomorphic.
(Page 12 defines isomorphic skeletons.) Skeleton k0 reduces to skeleton k1

by thinning, written k0
Ts−→ k1, if and only if there exists a strand s′ that

is effectively equivalent to s in k0 and k1 is isomorphic to both k0 with s

removed and k0 with s′ removed. In detail, k0
Ts−→ k1 if and only if there

exists a strand s′ such that

1. strands s and s′ are not in the image of k0’s strand map from the
point-of-view skeleton;

2. |Θk0(s)| = |Θk0(s
′)|;

3. there is a matcher σ such that σ ◦Θk0(s) ≡ Θk0(s
′);

4. for all variables in k0 with s removed, matcher σ is the identity;

5. matcher σ is a bijection, also called a renaming;

6. k0
Sσ−→ k

Cs,s′−→ k1;

7. k0
Sσ−→ k

Cs′,s−→ k2;

8. k1 is isomorphic to k2.

For the setwise thinning reduction, {k0}
Ts−� {k1 | k0

Ts−→ k1}, when there

is a k1 such that k0
Ts−→ k1.

Thinning in cpsa is also implemented for the case of sets of multiple
strands rather than pairs of individual strands. The correctness of thinning
has yet to be demonstrated.
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8.1 Reduction Systems

Notice that a setwise hulling reduction may produce the empty set, but a
setwise order enrichment and thinning reduction never does.

There are two preskeleton reduction systems, one with thinning, and one

without. For the one without, let reduction �=
⋃
s,s′

H−� ∪ O−�.

Definition 8.4 (Preskeleton Reduction System). Preskeleton k0 reduces to

skeleton k1, written k0
skel−→ k1, if {k0} �∗ K, k1 ∈ K, and K is a normal

form of �.

For each skeleton k, k
skel−→ k.

When using thinning, let reduction �=
⋃
s,s′

H−� ∪ O−� ∪
⋃
s

Ts−�.

Definition 8.5 (Preskeleton Reduction System with Thinning). Preskele-

ton k0 reduces to thinned skeleton k1, written k0
tskel−→ k1, if {k0} �∗ K,

k1 ∈ K, and K is a normal form of �.

For each thinned skeleton k, k
tskel−→ k.
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Chapter 9

Penetrator Derivable

For each algebra, the powers of the adversary are defined by a set of roles.
For the Basic Crypto Signature in Figure 2.1, the traces of the penetrator
roles are in Figure 9.1. Penetrator roles make no origination assumptions.

The context in which penetrator strands appear determine the messages
the adversary can derive. The context includes previously sent messages
and atoms it is forbidden to originate. An atom that is assumed to be non-
originating must be avoided as is a uniquely originating atom that is assumed
to originate on a regular strand.

The ternary relation Tp : Ta ` t states that message t is penetrator
derivable from previously sent messages Tp while avoiding atoms Ta. The
relation is defined by a set of inference rules. Most of the rules are justified by
a penetrator role that when instantiated, derives a message in the conclusion
of the rule.

The first rule states that no additional penetrator behavior is required to

base(t) = 〈+t〉, where t is an atom
tag(t) = 〈+t〉, where t is a tag
cat(t0, t1) = 〈−t0,−t1,+(t0, t1)〉
sep(t0, t1) = 〈−(t0, t1),+t0,+t1〉
enc(t0, t1) = 〈−t0,−t1,+{|t0|}t1〉
dec(t0, t1) = 〈−{|t0|}t1 ,−t2,+t0〉, where t2 = inv(t1)
hash(t) = 〈−t,+#t〉

Figure 9.1: Penetrator Traces
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derive t if it has been previously sent.

t ∈ Tp
Tp : Ta ` t

A uniquely originating atom need not be avoided if it has been sent.

Tp : Ta ` t
{t0} ∪ Tp : {t0} ∪ Ta ` t

(9.1)

There are two decomposition steps available to the penetrator.

{t0, t1} ∪ Tp : Ta ` t
{(t0, t1)} ∪ Tp : Ta ` t

[by sep(t0, t1)] (9.2)

Tp : Ta ` inv(t1) {t0, {|t0|}t1} ∪ Tp : Ta ` t
{{|t0|}t1} ∪ Tp : Ta ` t

[by dec(t0, t1)] (9.3)

There are three constructive steps.

Tp : Ta ` t0 Tp : Ta ` t1
Tp : Ta ` (t0, t1)

[by cat(t0, t1)]

Tp : Ta ` t0 Tp : Ta ` t1
Tp : Ta ` {|t0|}t1

[by enc(t0, t1)]

Tp : Ta ` t
Tp : Ta ` #t

[by hash(t)]

There are three rules for indivisible messages.

Tp : Ta ` Ci [by tag(Ci)]

t /∈ Ta t an atom
Tp : Ta ` t

[by base(t)]

A non-base sorted variable is derivable in a bundle that instantiates it with
any message other than an element of X>.

t ∈ X>
Tp : Ta ` t

Definition 9.1 (Outbound predecessors). The outbound predecessors of skele-
ton k at n is outpred(k, n) = {msgk(n0) | n0 ≺k n, n0 is transmitting}.
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Definition 9.2 (Avoidance Set). The avoidance set of skeleton k is avoid(k) =
Nk ∪ {t | t ∈ Uk ∧ |Ok(t)| = 1}.

An atom in avoid(k) is not available to the penetrator, except if it is
exposed by a messages transmission. Clearly, only uniquely originating atoms
can be exposed.

Definition 9.3 (Derivable Before). A message t is derivable before recep-
tion node n in skeleton k, written der(k, n, t), if Tp : Ta ` t where Tp =
outpred(k, n) and Ta = avoid(k).

Definition 9.4 (Realized Node). A reception node n is realized in skeleton k
if msgk(n) is derivable before n in k.

Notice that one can read off penetrator behavior from the proof tree used
to demonstrate that msgk(n) is derivable before n in k. For example, if
a decryption step is required by the proof, an instance of the penetrator’s
decryption role is indicated. In a bundle, for a non-base sorted variable,
there is a substitution that maps the variable to a message that is not a non-
base sorted variable. The substitution determines the penetrator behavior
associated with the variable.

Conjecture 9.1 (Realized Skeleton). A skeleton is realized if and only if all
of its reception nodes are realized.

Partial Proof. Given a skeleton k in which all of its reception nodes are real-
ized, the combination of the regular behavior in the skeleton, the penetrator
behavior specified by the proof trees used to demonstrate each node is real-
ized, and a substitution for non-base sorted variables determines a bundle.
The skeleton of the bundle may have more non-originating atoms than is
in Nk, however since the extra non-originating atoms are derivable by the
bundle that realizes k, the proof trees for those atoms specify any additional
penetrator behavior required.

The “only if” part of this proof has yet to be completed.

9.1 Implementation

The derivable before a node predicate is implemented using auxiliary func-
tions.
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Definition 9.5 (Buildable). Message t is buildable from previously sent mes-
sages Tp while avoiding Ta, written bld(t, Tp, Ta), if Tp : Ta ` t without the
use of Inference Rules 9.1, 9.2, and 9.3.

Consider the following reduction system based on Inference Rules 9.1,
9.2, and 9.3.

{t} ∪ Tp : Ta → Tp : Ta \ {t} if t is an atom or in X>
{(t0, t1)} ∪ Tp : Ta → {t0, t1, (t0, t1)} ∪ Tp : Ta if t0, t1 /∈ Tp
{{|t0|}t1} ∪ Tp : Ta → {t0, {|t0|}t1} ∪ Tp : Ta if t0 /∈ Tp and

bld(inv(t1), Tp, Ta)

Definition 9.6 (Decompose). Previously sent messages Tp and avoidance
set Ta decompose to T ′p, T

′
a, written decompose(Tp, Ta) = (T ′p, T

′
a), if Tp :

Ta →∗ T ′p : T ′a and (T ′p, T
′
a) is a normal form of reduction →.

The penetrator derivable predicate Tp : Ta ` t is implemented as

Tp : Ta ` t =
let T ′p, T

′
a = decompose(Tp, Ta) in

bld(t, T ′p, T
′
a)

The decomposition at a node function is

dcmp(k, n) =
decompose(outpred(k, n), avoid(k))

The derivable before a node predicate is implemented as

der(k, n, t) =
let Tp, Ta = dcmp(k, n) in
bld(t, Tp, Ta)
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Chapter 10

Carried Only Within

A set of encryptions Te protects critical message t in message t′ if t is carried
by t′ only within a member of Te. The definition of the carried only within
(cow) relation to follow makes this concept precise. The concept is used
when solving authentication tests (Chapter 11).

Definition 10.1 (Ancestors). Let t′ = t@ p. The ancestors of t′ in t at p is
the set anc(t, p) = {t@ p′ | p′ a proper prefix of p}.

Definition 10.2 (Carried Only Within). Message t is carried only within
set Te in t′ if for all carried positions p of t in t′, there exists an ancestor ta ∈
anc(t′, p) and te ∈ Te such that ta ≡ te.

The function defines carpos(t, t′) is defined on Page 6, the set of positions
at which t′ carries t. The interface to each algebra exports unify0, where

unify0(t, t′, σ) = {σ′ ◦ σ | σ′ ∈ unify(σ(t), σ(t′))}.

The details of a reduction on skeletons called a augmentation will be
described in Section 11.2. In simplified form, for an augmentation, given t, Te,
and t′, one must find all most general unifiers σ such that σ(t) is carried only
within set σ(Te) in σ(t′).

A carried only within solution cannot be directly computed using Defi-
nition 10.2. Given terms ta and te, the unify0 function finds substitutions σ
such σ(ta) ≡ σ(te), however, the carried positions carpos(σ(t), σ(t′)), are
used before the unify0 function computes the substitution σ. Figure 10.1
displays the iterative procedure that breaks the cyclic dependencies. Each
step of the iteration improves an approximation of a solution to the problem.
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cows(t, T, t′) =
cows0(t, T, t′, σid) — σid is the identity subst

cows0(t, T, t′, σ) =
if σ(t) is cow σ(T ) at σ(t′) then
{σ}

else
let S = fold(t, T, t′, σ) in⋃
σ′∈S cows0(t, T, t′, σ′)

fold(t, T, t′, σ) =
{σ′ ◦ σ | σ′ ∈ fold0(σ(T ), σ(t′), {σid}, carpos(σ(t), σ(t′)))

fold0(T, t′, S, {}) = S
fold0(T, t′, S, 〈p〉 a P ) =

fold0(T, t′, solve(anc(t′, p), T, S), P )

solve(T, T ′, S) =
{σ′ | t ∈ T, t′ ∈ T ′, σ ∈ S, σ′ ∈ unify0(t, t′, σ)}

Figure 10.1: The cows Function
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fold(t, T, t′, σ) =
fold0(t, T, t′, σ, {σid}, carpos(σ(t), σ(t′)))

fold0(t, T, t′, σ, S, {}) = {σ′ ◦ σ|σ′ ∈ S}
fold0(t, T, t′, σ, S, 〈p〉 a P ) =

fold0(t, T, t′, σ, solve(anc(σ(t′), p), σ(T ), S), P )

Figure 10.2: The Alternate fold Function

The correctness of this function is shown in [9], although for a version of the
algorithm with the alternate definition for the function fold in Figure 10.2.
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Chapter 11

Solving Authentication Tests

Definition 11.1 (Protectors). Let deriv be a boolean valued function that
determines if a message is derivable. The encryptions that protect tc in t is
protectors(deriv , tc, t) = prot(t) where

prot(t) =



undefined if t ≡ tc, else
{} if t = {|t0|}t1 and tc is not carried by t0, else
{{|t0|}t1} if t = {|t0|}t1 and ¬ deriv(inv(t1)), else
prot(t0) if t = {|t0|}t1 , else⋃
i<n prot(ti) if t = f(t0, . . . , tn−1) and t is not an atom, else
{} otherwise.

Definition 11.2 (Escape Set). The escape set for message tc at n in skele-
ton k is the set of encryptions esc(k, n, tc) where

esc(k, n, tc) = {te | te ∈ protectors(λt. der(k, n, t), tc, to), to ∈ outpred(k, n)}

and der(k, n, t) is true when t is derivable before n in k (See Definition 9.3).

The der function is implemented as der(k, n, t) = bld(t, Tp, Ta) where
(Tp, Ta) = dcmp(k, n), so that Tp and Ta need not be recomputed.

Definition 11.3 (Critical Position). Position p is a critical position of t =
msgk(n) if

1. p is a carried position in t,

2. either t@ p ∈ Uk, t@ p = #t1, or t@ p = {|t0|}t1 and t1 is not derivable
before n in k,
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3. esc(k, n, t@ p) is defined, and

4. anc(t, p) ∩ esc(k, n, t@ p) = ∅.

The message at a critical position is called an authentication test. It is
a nonce test if the message is an atom, otherwise it is a encryption test. (A
hash is treated as a kind of encryption in which the term that is hashed is the
encryption key.) Observe that every critical message at a node in a skeleton
is not derivable at the node.

Conjecture 11.1. A reception node is unrealized iff it has a critical position.

Definition 11.4 (Target Messages). Let Te be a set of messages, and tc be
a message. The set of target messages is

targ(tc, Te) = {tc} ∪ {tt | te ∈ Te, p ∈ carpos(tc, te), tt ∈ anc(te, p)} \ Te.

Definition 11.5 (Critical Position Solved). Suppose p is a critical posi-

tion at n0 in k0 and k0
φ,σ7−→ k1. Let t0 = msgk(n) @ p, t1 = σ(t0), T0 =

esc(k0, n0, t0), T1 = σ(T0), n1 = φ(n0), and t = msgk1(n1). Critical posi-
tion p is solved in k1 after k0 at n0 if:

1. anc(t, p) ∩ T1 6= ∅, or

2. for some tp ∈ outpred(k1, n1), t1 is not carried only within T1 in tp, or

3. targ(t1, esc(k1, n1, t1)) \ σ(targ(t0, T0)) 6= ∅ and there are variables in
k’s protocol that are not atoms, or

4. the decryption key of a member of T1 is derivable before n1 in k1, or

5. t1 is an encryption and its encryption key is derivable before n1 in k1.

11.1 Test Solving Steps

A step used to solve a test is a contraction (Definition 11.6), a regular aug-
mentation (Definition 11.7), a displacement (Definition 11.8), or a listener
augmentation (Definition 11.9).
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Definition 11.6 (Contraction). Let p be a critical position at n in k, t =
msgk(n), and Te = esc(k, n, t@p). Suppose there is a substitution σ such that
for some ta ∈ anc(t, p), te ∈ Te, σ(ta) = σ(te). Skeleton k1 is a contraction if

k
Sσ−→ k0

tskel−→ k1.

cpsa computes a set of substitutions for each critical position, and then
removes some substitutions to form a complete set of most general unifiers.
Only most general unifiers are used for contractions.

Definition 11.7 (Regular Augmentation). Suppose substitution σ, non-
listener role r, and trace C are selected as described in Section 11.2. Skele-

ton k2 is a regular augmentation if k
Sσ−→ k0

An,r,C−→ k1
tskel−→ k2.

Definition 11.8 (Displacement). Let substitution σ, non-listener role r, and
trace C be selected as described in Section 11.2, and there be a preskeleton k1

such that k
Sσ−→ k0

An,r,C−→ k1. Suppose there are strands s and s′, where one
of them is the newly created strand, and a most general unifier σ′ such
that σ′(Θk1(s)(j)) ≡ σ′(Θk1(s

′)(j)) for 0 ≤ j < |Θk1(s)|. Skeleton k4 is a

displacement if k1
Sσ′−→ k2

Cs,s′−→ k3
tskel−→ k4.

Definition 11.9 (Listener Augmentation). Let p be a critical position at n
in k, tc = msgk(n) @ p, and Te = esc(k, n, tc). For each {|t0|}t1 ∈ Te, skele-

ton k1 is a listener augmentation if k
An,lsn,C−→ k0

tskel−→ k1 and C listens for
inv(t1), i.e. C = 〈− inv(t1),+ inv(t1)〉. If tc = {|t0|}t1 , then skeleton k1 is a

listener augmentation if k
An,lsn,C−→ k0

tskel−→ k1 and C = 〈−t1,+t1〉.

For regular augmentation and displacement, cpsa removes solutions that
lead to skeletons that are less general than other solutions, that is, when
there is a homomorphism from a solution to the omitted solution.

Definition 11.10 (Cohort Member). For unrealized node n in a skeleton k0,

and a position p at n, k0
n,p−→ k1 asserts that k1 is a member of the cohort of k0,

where k1 is derived using contraction, regular augmentation, displacement,
or listener augmentation, and p is solved in k1 after k0 at n. For the setwise
cohort member reduction, {k0}

n,p−� {k1 | k0
n,p−→ k1}, when n is unrealized

in k0, and p is a critical position at n.

Conjecture 11.2 (Critical Message Solved). If k0
n0,p0−→ k1

n1,p1−→ . . .
n`−1,p`−1−→ k`

is a sequence of cohort member reductions, then for positive `, p0 is solved
in k` after k0 at n0.
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11.2 Augmentation

Let tc be the critical message that demonstrates n is a test node in skeleton k.
For each triple (σ, r, C) that satisfies some properties, there is a potential

regular augmentation with
tskel−→◦

An,r,C−→ ◦ Sσ−→. When successful, the message t
in the last event of the added strand is outbound, carries σ(tc), but σ(tc) is
not carried only within escape set σ(Te) in t, where Te = esc(k, n, tc), the
escape set. Moreover, for every other message t in the strand, σ(tc) is carried
only within escape set σ(Te) in t. The last event in the strand is called a
transforming event, as this event no longer protects the critical message, but
events that precede it do.

cpsa computes the parameters for a set of augmentation steps as follows.
Suppose skeleton k = kX( , P, , , , ). First, compute the target messages,
Tt = targ(tc, Te). Next, for each non-listener role r(Cr, Nr, Ur) ∈ P and each
index h where Cr(h) = +t, a transmission, do the following.

Create fresh variables: Let σr be a sort preserving variable renaming,
where the domain is the variables that occur in Cr†h, and every variable
in the range does not occur in X or in P .

Insert critical message: For each message t′ carried by t, and each tt ∈
targ(tc, Te), consider most general unifiers σ′ where, σ′(t′) = σ′(tt) and
σr E σ′. (In other words, σ′ = σ0 ◦ σr for some σ0.)

Ensure previous events do not transform: For each σ′, find most gen-
eral unifiers σ such that for 0 ≤ i < h, σ(tc) is carried only within
σ(Te) at σ(C(i)) and σ′ E σ. The function cowt , presented in Fig-
ure 11.1, performs the explorations, producing the substitutions S ′ =
cowt(tc, Te, Cr † h, S). Function fold is defined in Figure 10.1. Let Sr,h
be the set S ′ with non-most general unifiers removed.

Ensure last event transforms: For each σ ∈ Sr,h, if σ(tc) is not carried
only with σ(Te) at σ(C(h)), try augmenting with parameters n, r,
σ ◦ C † h, and σ.

For target terms to be the reasonable set for insertion of the critical mes-
sage, one must require that variables of sort message are acquired. This fact
needs to be explained and noted as another reason for the acquired variable
constraint.

37



cowt(t, T, C, S) =⋃
σ∈S cowt0(t, T, C, σ)

cowt0(t, T, C, σ) =
if ∀t±t ∈ C → σ(t) is cow σ(T ) at σ(t′) then
{σ}

else
cowt(t, T, C, foldn(t, T, C, {σ}))

foldn(t, T, 〈〉, S) = S
foldn(t, T, 〈±t′〉 a C, S) =

foldn(t, T, C,
⋃
σ∈S fold(t, T, t′, σ))

Figure 11.1: The cowt Function
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Chapter 12

Collapsing and Preconditioning

The input preskeleton is preconditioned before it is subjected to authen-
tication test solving. The preskeleton is converted to a skeleton and then
collapsing is applied so as to ensure all shapes are found. Collapsing handles
the case in which strands merged in the input lead to shapes.

Definition 12.1 (Collapsing). Let k0 and k1 be two skeletons such that
there are two strands, s and s′, and a most general unifier σ such that
σ(Θk0(s)(j)) ≡ σ(Θk0(s

′)(j)) for all 0 ≤ j < |Θk0(s)|. Then k0 collapses

to k1, written k0
clp−→ k1, if k0

Sσ−→ k
Cs,s′−→ k′

skel−→ k1.

Definition 12.2 (Preconditioning). For point-of-view preskeleton k0, k0 is

preconditioned to k1, written k0
pre−→ k1, if k0

skel−→ k (
clp−→)∗ k1.

39



Chapter 13

Generalization

The cohort reduction system produces a set of realized skeletons. General-
ization attempts to convert that set into a set of skeletons. Not all possible
cases are implemented due to performance issues, so it is not uncommon to
find a realized skeleton in the output of a run of cpsa that is not a shape.

Conjecture 13.1 (Shape Completeness). Without generalization, cpsa pro-
duces a complete set of shapes among the realized skeletons in its output.

Definition 13.1 (Generalize). A skeleton k0 generalizes skeleton k1, written

k1
<−→k k0, if both k0 and k1 are realized, k0 and k1 are not isomorphic, there

is a homomorphism from a point-of-view skeleton k to k0, and a strandwise
injective homomorphism k0 7→ k1.

If skeletons are allowed to be isomorphic, we write k1
≤−→k k0, and note

that
≤−→k defines a partial ordering. Therefore, there are maximal elements

in the partial ordering. A shape associated with a preskeleton is a maximally
generalized realized skeleton derived from the preskeleton.

Definition 13.2 (Shape). Let k0 be a preskeleton such that k0
pre−→ k for

some skeleton k, and let k1 be a realized skeleton such that k 7→ k1. Skele-

ton k2 is a shape of k0 if k1
≤−→k k2, and k2 is maximal among skeletons that

generalize k1.

There are four generalization reductions used to transform a realized
skeleton into its shapes: deletion, weakening, forgetting, and separation.
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Definition 13.3 (Deletion). Skeleton k0 generalizes by deletion skeleton k1,

written k1
Dn−→k k0, if k1

<−→k k0, k2
skel−→ k0, and k2 is the result of deleting

node n in k1 and all of the nodes that follow it in its strand.

Definition 13.4 (Weakening). Skeleton k0 generalizes by weakening skele-

ton k1, written k1

Wn,n′−→ k k0, if k1
<−→k k0, k2

skel−→ k0, and k2 is k1 except
≺k2 = (≺k1 \ {(n, n′)})∗.

Definition 13.5 (Forgetting). Skeleton k0 generalizes by origination as-

sumption forgetting skeleton k1, written k1
Ft−→k k0, if k1

<−→k k0, k2
skel−→ k0,

and k2 is k1 except Uk2 = Uk1 \ {t} and Nk2 = Nk1 \ {t}.

Sometimes a more general skeleton can be found by replacing some oc-
currences of one variable by a fresh variable. For variable separation, the
location of an occurrence of a variable is defined using a skeleton’s instance.
Recall that in the external syntax, strand s in skeleton k is described by an
instance of the form i(r, h, σ). (Instances are introduced in Section 5.4.)

Definition 13.6 (Location). Variable x is at location (s, y, p) in k if the
instance at Θk(s) is i(r, h, σ) and x = σ(y) @ p.

Definition 13.7 (Variable Separation). Skeleton k0 generalizes by variable

separation skeleton k1, written k1
Vt−→k k0, if k1

<−→k k0, k2
skel−→ k0, and k2

is k1 except t is a variable that occurs in multiple locations in k1, and k2 is
the result of replacing t with a variable t0 of the same sort at a proper subset
of t’s locations, where t0 occurs nowhere in k1.

When separating a non-originating term, both the term and its clone are
non-originating. When separating a uniquely originating term, either the
term or its clone is uniquely originating.

What happens when separating t in k into t and t0, and ltk(t, t) ∈ Nk?
Should a skeleton k0 with ltk(t, t0) ∈ Nk0 be a candidate separation? Cur-
rently, only skeletons k1 with ltk(t, t) ∈ Nk1 and ltk(t0, t0) ∈ Nk1 are consid-
ered.

Definition 13.8 (Generalization). The reduction
gen−→k=

⋃
n

Dn−→k ∪
⋃
n,n′

Wn,n′−→ k

∪
⋃
t

Ft−→k ∪
⋃
t

Vt−→k is the generalization relation. For the setwise general-

ization reduction, {k0}
gen−�k {k1} when k0

gen−→k k1.

41



The fact that each generalization reduction replaces a singleton with just
a singleton requires explanation. It’s simply a matter of performance. If
all possibilities are considered, cpsa run time would become dominated by
generalization. Since generalization failures do not interfere with producing
a complete description of the input, an approximation of the set of shapes is
okay.

Conjecture 13.2 (Generalization). The relation
gen−�k is terminating.

Discussion

In [5], the shapes of a point-of-view skeleton are said to be minimal, in
the partial ordering induced by injective homomorphism, among all realized
homomorphic images of the point-of-view skeleton. Minimal corresponds to
maximally generalized. The need for origination assumption forgetting was
not known when [5] was written. Generalization by variable separation uses
non-carried positions, and in particular, positions that traverse an atom edge.
Algebras in previous strand space papers have no concept of a position that
traverses an atom edge, and therefore cannot be used to specify generalization
by variable separation.

Variable separation can be expensive when there are many possible ways
to separate variables. The implementation simply truncates the search when
it grows too large.
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Chapter 14

Skeleton Reduction System

Let reduction�k= (
co−� ∪ gen−�k)

+. This reduction system specifies the cpsa
program.

Conjecture 14.1. The reduction �k is confluent.

Conjecture 14.2 (Soundness). Let k0 be a preskeleton and k be an unreal-

ized skeleton such that k0
pre−→ k. Skeleton k1 is a shape of k0 if {k} �k K,

k1 ∈ K, and K is a normal form.

The set of bundles denoted by preskeleton k, [[k]] is defined on Page 13.

Conjecture 14.3 (Completeness). Let k0 be a preskeleton and k be an

unrealized skeleton such that k0
pre−→ k. For all K such that {k} �k K,

[[k0]] =
⋃
k1∈K [[k1]].
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Appendix A

Penetrator Non-Origination
Assumptions

Penetrator non-origination assumptions have been added as an extension to
the basic strand space theory. An atom is penetrator non-originating in a
bundle if it originates on no penetrator strand, but each of its variables occurs
in some strand’s trace.

Penetrator non-origination assumptions can be used to model passwords.
Several regular participants might know a password and originate it in a run
of a protocol, but an idealized password is one the penetrator cannot guess.

A penetrator non-originating atom is similar to a non-originating atom,
except in that it can be carried. There are two definitions that require
change. Penetrator non-originating atoms must be added to the avoidance
set of Definition 9.2. When the message at a critical position is an atom (see
Definition 11.3, Item 2), instead of being uniquely originating, and can also
be penetrator non-originating.
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Appendix B

Programs Specified by a Role

Given the definitions in Chapter 3, a role can be viewed as an abstraction of
a program, and a strand as an abstraction of a run of a program. But what
program is specified by a role?

Consider a role that contains the event −{|t0|}t1 . If the program has the
decryption key inv(t1) before the message is received, the program could
decrypt the message and extract t0. Alternatively, if the program has {|t0|}t1 ,
or has t0 and the encryption key t1, it might check to see if the received
message is the same as the expected message, and abort the run if not.

Here is an example of when the second behavior is desired. In cpsa,
before hashing was part of the algebra, an encryption was used to represent
hashing. The hash of t, #t, expanded to {|“hash”, t|}h, where h was an
asymmetric key known to all, but no one knew h−1. The tag “hash” was
added to the encryption so as to ensure a hash was never confused with
other uses of encryption.

A role does not specify a valid program if the only possible way of in-
terpreting the event −#t is by using h−1 to decrypt {|“hash”, t|}h. The
remainder of this section describes how this class of specification errors is
detected for the Basic Crypto Algebra.

The behaviors associated with a trace depend on the set of messages
available initially. The behaviors are specified by a data flow relation, T0, CB
T1. For trace C, the relation T0, C B T1 asserts that when messages T0 are
available initially, there is a behavior of C that produces messages T1.

A derivation tree used to demonstrate T0, C B T1 shows the steps that
enable the flow of data. The tree can be linearized, and thus specifies a
sequential program that implements the role.
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The data flow relation is defined with the aid of a data flow relation for
a sequence of events, T0, C B T1.

T, 〈〉B T T0, 〈±t〉B T T,C B T1

T0, 〈±t〉 a C B T1

The T0, 〈±t〉 B T1 relation is defined using the T0, C B T1 relation. An
outbound message can be formed if it is available initially

t ∈ T
T, 〈+t〉B T

or if it can be formed by construction.

T, 〈+t1, . . . ,+tn〉B T
T, 〈+f(t1, . . . , tn)〉B T

[
f(t1, . . . , tn)
not an atom

]
An inbound message makes atoms and acquired variables available.

T, 〈−t〉B T ∪ {t} [t an atom or a variable]

When the decryption key is available, the contents of the encryption are
also available. Furthermore, the encryption can be sent in future messages
without access to its encryption key.

T0, 〈+ inv(t1)〉B T0 T0, 〈−t0〉B T1

T0, 〈−{|t0|}t1〉B T1 ∪ {{|t0|}t1}

A received encryption that can be sent ensures the encryption agrees with
currently available terms and makes nothing new available.

T, 〈+{|t0|}t1〉B T
T, 〈−{|t0|}t1〉B T

Consider an operation f other than the encryption operation. The order
in which messages that occur in a message constructed using f are made
available may determine if the decryption key of an encryption is available.
All possible orderings must be explored. Let πn be a permutation on the
domain of a sequence of length n.

T0, 〈−t1, . . . ,−tn〉 ◦ πn B T1

T0, 〈−f(t1, . . . , tn)〉B T1

[
f(t1, . . . , tn)
not an atom

]
The data flow relation is used to find initial sets of atoms that are com-

patible with some behavior of a trace that produces messages.
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proc(a, n,Kb, K
−1
a ) proc(a, n,Kb, Ka)

send({|a, n|}Kb); send({|a, n|}Kb);
x0 ← recv(); x0 ← recv();
x1 ← decrypt(x0, K

−1
a ); x1 ← {|n|}Ka ;

x1 6= n→ fail; x0 6= x1 → fail;
end end

Figure B.1: Two programs that implement the role 〈+{|a, n|}Kb ,−{|n|}Ka〉.

Definition B.1 (Trace Parameters). The set of atoms T0 are parameters of
trace C if T0, C B T1 for some T1, and T0 is minimal, that is for all T ′0 such
that T ′0, C B T1, T ′0 6⊂ T0.

The role 〈+{|a, n|}Kb ,−{|n|}Ka〉 has two sets of parameters, {a, n,Kb, K
−1
a }

and {a, n,Kb, Ka}. See Figure B for two examples of programs that imple-
ment the role, using distinct parameter sets.

The cpsa distribution contains a program that computes the set of pa-
rameters of a role. It was used to find an error in a role’s use of hashing as
described at the beginning of this section. The role in question is the verifier
role that is part of an attestation protocol [3]. In an earlier version of the
role, every set of parameters included the decryption key of the encryption
used as a hash. The role was so complicated that inspection did not reveal
the error.

Note that this section is specific to the basic crypto algebra in the sense
that all non-atomic operations are assumed to be constructable, and encryp-
tion has the specific de-construction recipe shown. Although carried positions
were not mentioned in this section, the inference system specifies the same
concept. In fact, in future work we hope to show that the inference system is
all one needs to define, and that which positions are carried, which are pro-
tected, and which sorts are atoms can be defined in terms of the inferences
available.

48



Appendix C

Shape Analysis Sentences

For each point-of-view skeleton and its shapes found by cpsa, there is a
formula in a language of order-sorted first-order logic called a shape analy-
sis sentence. The sentence has a special form, ∀X(Ψ ⊃

∨
i ∃Yi(∆i ∧ Φi)),

where Ψ, ∆i, and Φi are conjunctions of atomic formulas and X and Yi are
variable sets. This fragment of first-order logic is called coherent logic. For-
mula Ψ describes the point-of-view skeleton k0. For each homomorphism to

a shape, k0
δi7−→ ki, formula ∆i describes the structure preserving maps δi,

and the shape ki is described by Φi.
An interpretation of a shape analysis sentence is a skeleton. If cpsa finds

all of the shapes and the homomorphisms associated with a point-of-view
skeleton, the analysis’ sentence is satisfied in all realized skeletons. Let Σ be
a shape analysis sentence and Ψ be a security goal. If Σ ⊃ Ψ is a theorem in
order-sorted first-order logic, then Ψ is satisfied in all realized skeletons and
its protocol achieves this goal.

Shape analysis sentences are closely related to security goals in [7], and
were motivated by that work. This material was extracted from [11, Ap-
pendix B], the paper that introduced shape analysis sentences.

C.1 Security Goals

The signature for terms extends the one used for the underlying message alge-
bra with one new sort node, the sort of nodes. Sort node has no subsorting
relations with any other sort symbol.

Security goals make use of protocol specific and protocol independent
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predicates. For each role rY (C,N,U) ∈ P and i < |C|, there is a protocol
specific unary position predicate P [r, i] : node. For each role rY (C,N,U) ∈
P and variable x : S that occurs in C, there is a protocol specific binary
parameter predicate P [r, x] : node×S. The protocol independent unary
predicates are non : B and uniq : B for each base sort B. The remaining
protocol independent predicates are binary, and are uniq-at : B × node,
str-prec : node×node, prec : node×node, and equality.

Soon we define F(k) = (Y,Φ), where Φ is k’s skeleton formula, and Y is
the formula’s variable set, but first we define the relevant nodes of a skele-
ton N . Let k = kX(P, I,≺, N, U) and let ≺− be the transitive reduction
of ≺. Recall that ΘX is the strand space defined by I, see Section 5.4. The
relevant nodes of k are N = Ns ∪N≺ ∪Nu where

Ns = {(s, i) | s ∈ Dom(ΘX) ∧ i = |ΘX(s)| − 1}

N≺ = {(s, i) | (s′, i′) ∈ nodes(ΘX) ∧ s 6= s′

∧((s, i) ≺− (s′, i′) ∨ (s′, i′) ≺− (s, i))}
Nu = {(s, i) | t ∈ U, (s, i) ∈ Ok(t)}

For F(k) = (Y,Φ), the variable set Y isX augmented with a fresh variable
of sort node for each node in N , and let v(n) be the variable associated with
node n.

The formula Φ is a conjunction of atomic formulas composed as follows.

• For each (s, i) ∈ N , assert P [r, i](v(s, i)), where I(s) = i(r, h, σ).

• For each s ∈ Dom(I), let I(s) = i(r, h, σ). For each variable x ∈
Vars(rc † h) and term t = σ(x), assert P [r, x](v(s, h − 1), t), where
rc = C when r = r(C,N,U).

• For each (s, i), (s, i′) ∈ N such that i < i′, assert str-prec(v(s, i), v(s, i′)).

• For each (s, i) ≺− (s′, i′) such that s 6= s′, assert prec(v(s, i), v(s′, i′)).

• For each t ∈ N , assert non(t).

• For each t ∈ U and node n such that n ∈ Ok(t), assert uniq-at(t, v(n)).

• For each t ∈ U without a point of origination in k, assert uniq(t).
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∀a0, b0 : A, s0 : S, d0 : D, n0 : N(
resp1(n0) ∧ respa(n0, a0) ∧ respb(n0, b0)
∧ resps(n0, s0) ∧ respd(n0, d0)
∧ non(a−1

0 ) ∧ non(b−1
0 )

⊃
∃a1, b1, b2 : A, s1 : S, d1 : D, n1, n2, n3 : N(
n0 = n1 ∧ a0 = a1 ∧ b0 = b1 ∧ s0 = s1 ∧ d0 = d1

∧ resp1(n1) ∧ respa(n1, a1) ∧ respb(n1, b1)
∧ resps(n1, s1) ∧ respd(n1, d1) ∧ resp0(n2)
∧ init0(n3) ∧ inita(n3, a1) ∧ init b(n3, b2) ∧ inits(n3, s1)
∧ uniq-at(s1, n2) ∧ prec(n3, n2) ∧ str-prec(n2, n1)
∧ non(a−1

1 ) ∧ non(b−1
1 )))

Figure C.1: Shape Analysis Sentence for Blanchet’s Protocol

Given a set of homomorphisms δi : k0 7→ ki, its shape analysis sentence is

S(δi : k0 7→ ki) = ∀X0(Φ0 ⊃
∨
i

∃Xi(∆i ∧ Φi)), (C.1)

where F(k0) = (X0,Φ0). The same procedure produces Xi and Φi for
shape ki with one proviso—the variables in Xi that also occur in X0 must be
renamed to avoid trouble while encoding the structure preserving maps δi.

The structure preserving maps δi = (φi, σi) are encoded in ∆i by a con-
junction of equalities. Map σi is coded as equalities between a message alge-
bra variable in the domain of σi and the term it maps to. Map φi is coded
as equalities between node variables in Φ0 and node variables in Φi. Let v0

be the node variables freshly generated for k0, and vi be the ones generated
for ki. The strand mapping part of ∆i is∧

(s,j)∈Dom(v0)

v0(s, j) = vi(φi(s), j).

The shape analysis sentence for the second analysis of Blanchet’s Simple
Example Protocol in Section 5.1 is displayed in Figure C.1. The sort node is
abbreviated as N, and the parameter predicate P [r, x](z, t) is written rx(z, t)
with the protocol left implicit.

Semantics of Skeleton Formulas. Let k = kX(P, I,≺, N, U). The uni-
verse of discourse is D = (N × N) ∪ AX . When formula Φ is satisfied in
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skeleton k with variable assignment α : Y → D, we write k, α |= Φ. We
write ᾱ when α is extended to terms in the obvious way. When sentence Γ
is satisfied in skeleton k, we write k |= Γ.

• k, α |= P [r, i](y) iff α(y) ∈ nodes(ΘX), α(y) = (s, i), and for some σ,

ΘX(s) † i+ 1 = σ ◦ rc † i+ 1.

Recall rc = C when r = r(C,N,U).

• k, α |= P [r, x](y, t) iff α(y) ∈ nodes(ΘX), ᾱ(t) ∈ AX , and with α(y) =
(s, i) and for some σ with σ(x) = ᾱ(t),

ΘX(s) † i+ 1 = σ ◦ rc † i+ 1.

The interpretation of the protocol independent predicates is straightfor-
ward.

• k, α |= prec(y, z) iff α(y) ≺ α(z).

• k, α |= str-prec(y, z) iff α(y) ≺ α(z), α(y) = (s, i), and α(z) = (s, i′).

• k, α |= non(t) iff ᾱ(t) ∈ ν.

• k, α |= uniq(t) iff ᾱ(t) ∈ υ.

• k, α |= uniq-at(t, y) iff ᾱ(t) ∈ υ and α(y) ∈ Ok(ᾱ(t)).

• k, α |= y = z iff ᾱ(y) = ᾱ(z).

Let Σ be a shape analysis sentence and Ψ be a security goal. If Σ ⊃ Ψ is
a theorem in order-sorted first-order logic, then Ψ is satisfied in all realized
skeletons and its protocol achieves this goal.

Since ≺ is transitive, transitivity of prec can be used to prove a protocol
achieves a goal. That is,

prec(x, y) ∧ prec(y, z) ⊃ prec(x, z).

Furthermore, str-prec(x, y) ⊃ prec(x, y).
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preskeletons

isomorphic, 12
protectors, 34
protocol, 8

range, 5
realized skeleton, 11, 13
regular strand, 10
regular augmentation, 36
role, 8
run of protocol, 8

sequence, 2
setwise reduction system, 20
shape, 40
shape analysis sentence, 49
skel , 26
skeleton, 12

realized, 11, 13
thinned, 24

solved critical position, 35
sorts, 3
strand, 7
strand space, 7
strand succession, 8
strandwise injective homomorphism,

12
strict partial order, 8

substitution, 5

target messages, 35
thinned skeleton, 24
thinning, 24
trace, 7
transforming event, 37
tskel , 26

unify, 31
uniquely originates, 8

variable separation, 41
variable set, 3
Vars , 8

weakening, 41

56


