crf-chain1-constrained-0.3.0: First-order, constrained, linear-chain conditional random fields

Safe HaskellNone

Data.CRF.Chain1.Constrained.Inference

Synopsis

Documentation

tag :: Model -> Xs -> [Lb]Source

Find the most probable label sequence (with probabilities of individual lables determined with respect to marginal distributions) satisfying the constraints imposed over label values.

tagK :: Int -> Model -> Xs -> [[(Lb, LogFloat)]]Source

Get (at most) k best tags for each word and return them in descending order. TODO: Tagging with respect to marginal distributions might not be the best idea. Think of some more elegant method.

marginals :: Model -> Xs -> [[(Lb, LogFloat)]]Source

Tag probabilities with respect to marginal distributions.

accuracy :: Model -> [(Xs, Ys)] -> DoubleSource

Compute the accuracy of the model with respect to the labeled dataset.

expectedFeaturesIn :: Model -> Xs -> [(FeatIx, LogFloat)]Source

A list of features (represented by feature indices) defined within the context of the sentence accompanied by expected probabilities determined on the basis of the model.

One feature can occur multiple times in the output list.

zx :: Model -> Xs -> LogFloatSource

Normalization factor computed for the Xs sentence using the backward computation.

zx' :: Model -> Xs -> LogFloatSource

Normalization factor computed for the Xs sentence using the forward computation.