{-# LANGUAGE BangPatterns #-} module Number.ModArithmetic ( exponantiation_rtl_binary , inverse , gcde_binary ) where import Data.Bits -- note on exponantiation: 0^0 is treated as 1 for mimicking the standard library; -- the mathematic debate is still open on whether or not this is true, but pratically -- in computer science it shouldn't be useful for anything anyway. -- | exponantiation_rtl_binary computes modular exponantiation as b^e mod m -- using the right-to-left binary exponentiation algorithm (HAC 14.79) exponantiation_rtl_binary :: Integer -> Integer -> Integer -> Integer exponantiation_rtl_binary 0 0 m = 1 `mod` m exponantiation_rtl_binary b e m = loop e b 1 where sq x = (x * x) `mod` m loop !0 _ !a = a `mod` m loop !i !s !a = loop (i `shiftR` 1) (sq s) (if odd i then a * s else a) -- | inverse computes the modular inverse as in g^(-1) mod m inverse :: Integer -> Integer -> Maybe Integer inverse g m = if d > 1 then Nothing else Just x where (x,_,d) = gcde_binary g m -- | get the extended GCD of two integer using the extended binary algorithm (HAC 14.61) -- get (x,y,d) where d = gcd(a,b) and x,y satisfying ax + by = d gcde_binary :: Integer -> Integer -> (Integer, Integer, Integer) gcde_binary a' b' | b' == 0 = (1,0,a') | a' >= b' = compute a' b' | otherwise = (\(x,y,d) -> (y,x,d)) $ compute b' a' where getEvenMultiplier !g !x !y | areEven [x,y] = getEvenMultiplier (g `shiftL` 1) (x `shiftR` 1) (y `shiftR` 1) | otherwise = (x,y,g) halfLoop !x !y !u !i !j | areEven [u,i,j] = halfLoop x y (u `shiftR` 1) (i `shiftR` 1) (j `shiftR` 1) | even u = halfLoop x y (u `shiftR` 1) ((i + y) `shiftR` 1) ((j - x) `shiftR` 1) | otherwise = (u, i, j) compute a b = let (x,y,g) = getEvenMultiplier 1 a b in loop g x y x y 1 0 0 1 loop g _ _ 0 !v _ _ !c !d = (c, d, g * v) loop g x y !u !v !a !b !c !d = let (u2,a2,b2) = halfLoop x y u a b in let (v2,c2,d2) = halfLoop x y v c d in if u2 >= v2 then loop g x y (u2 - v2) v2 (a2 - c2) (b2 - d2) c2 d2 else loop g x y u2 (v2 - u2) a2 b2 (c2 - a2) (d2 - b2) areEven :: [Integer] -> Bool areEven = and . map even