{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} module Main where import Gauge.Main import Crypto.Cipher.AES import qualified Crypto.Cipher.AESGCMSIV as AESGCMSIV import Crypto.Cipher.Blowfish import Crypto.Cipher.CAST5 import qualified Crypto.Cipher.ChaChaPoly1305 as CP import Crypto.Cipher.DES import Crypto.Cipher.Twofish import Crypto.Cipher.Types import Crypto.ECC import Crypto.Error import Crypto.Hash import qualified Crypto.KDF.BCrypt as BCrypt import qualified Crypto.KDF.PBKDF2 as PBKDF2 import Crypto.Number.Basic (numBits) import Crypto.Number.Generate import qualified Crypto.PubKey.DH as DH import qualified Crypto.PubKey.ECC.Types as ECC import qualified Crypto.PubKey.ECC.Prim as ECC import qualified Crypto.PubKey.ECDSA as ECDSA import qualified Crypto.PubKey.Ed25519 as Ed25519 import qualified Crypto.PubKey.EdDSA as EdDSA import Crypto.Random import Control.DeepSeq (NFData) import Data.ByteArray (ByteArray, Bytes) import qualified Data.ByteString as B import qualified Crypto.PubKey.ECC.P256 as P256 import Number.F2m data HashAlg = forall alg . HashAlgorithm alg => HashAlg alg benchHash = [ env oneKB $ \b -> bgroup "1KB" $ map (doHashBench b) hashAlgs , env oneMB $ \b -> bgroup "1MB" $ map (doHashBench b) hashAlgs ] where doHashBench b (name, HashAlg alg) = bench name $ nf (hashWith alg) b oneKB :: IO Bytes oneKB = getRandomBytes 1024 oneMB :: IO Bytes oneMB = getRandomBytes $ 1024 * 1024 hashAlgs = [ ("MD2", HashAlg MD2) , ("MD4", HashAlg MD4) , ("MD5", HashAlg MD5) , ("SHA1", HashAlg SHA1) , ("SHA224", HashAlg SHA224) , ("SHA256", HashAlg SHA256) , ("SHA384", HashAlg SHA384) , ("SHA512", HashAlg SHA512) , ("SHA512t_224", HashAlg SHA512t_224) , ("SHA512t_256", HashAlg SHA512t_256) , ("RIPEMD160", HashAlg RIPEMD160) , ("Tiger", HashAlg Tiger) --, ("Skein256-160", HashAlg Skein256_160) , ("Skein256-256", HashAlg Skein256_256) --, ("Skein512-160", HashAlg Skein512_160) , ("Skein512-384", HashAlg Skein512_384) , ("Skein512-512", HashAlg Skein512_512) --, ("Skein512-896", HashAlg Skein512_896) , ("Whirlpool", HashAlg Whirlpool) , ("Keccak-224", HashAlg Keccak_224) , ("Keccak-256", HashAlg Keccak_256) , ("Keccak-384", HashAlg Keccak_384) , ("Keccak-512", HashAlg Keccak_512) , ("SHA3-224", HashAlg SHA3_224) , ("SHA3-256", HashAlg SHA3_256) , ("SHA3-384", HashAlg SHA3_384) , ("SHA3-512", HashAlg SHA3_512) , ("Blake2b-160", HashAlg Blake2b_160) , ("Blake2b-224", HashAlg Blake2b_224) , ("Blake2b-256", HashAlg Blake2b_256) , ("Blake2b-384", HashAlg Blake2b_384) , ("Blake2b-512", HashAlg Blake2b_512) , ("Blake2s-160", HashAlg Blake2s_160) , ("Blake2s-224", HashAlg Blake2s_224) , ("Blake2s-256", HashAlg Blake2s_256) ] benchPBKDF2 = [ bgroup "64" [ bench "cryptonite-PBKDF2-100-64" $ nf (pbkdf2 64) 100 , bench "cryptonite-PBKDF2-1000-64" $ nf (pbkdf2 64) 1000 , bench "cryptonite-PBKDF2-10000-64" $ nf (pbkdf2 64) 10000 ] , bgroup "128" [ bench "cryptonite-PBKDF2-100-128" $ nf (pbkdf2 128) 100 , bench "cryptonite-PBKDF2-1000-128" $ nf (pbkdf2 128) 1000 , bench "cryptonite-PBKDF2-10000-128" $ nf (pbkdf2 128) 10000 ] ] where pbkdf2 :: Int -> Int -> B.ByteString pbkdf2 n iter = PBKDF2.generate (PBKDF2.prfHMAC SHA512) (params n iter) mypass mysalt mypass, mysalt :: B.ByteString mypass = "password" mysalt = "salt" params n iter = PBKDF2.Parameters iter n benchBCrypt = [ bench "cryptonite-BCrypt-4" $ nf bcrypt 4 , bench "cryptonite-BCrypt-5" $ nf bcrypt 5 , bench "cryptonite-BCrypt-7" $ nf bcrypt 7 , bench "cryptonite-BCrypt-11" $ nf bcrypt 11 ] where bcrypt :: Int -> B.ByteString bcrypt cost = BCrypt.bcrypt cost mysalt mypass mypass, mysalt :: B.ByteString mypass = "password" mysalt = "saltsaltsaltsalt" benchBlockCipher = [ bgroup "ECB" benchECB , bgroup "CBC" benchCBC ] where benchECB = [ bench "DES-input=1024" $ nf (run (undefined :: DES) cipherInit key8) input1024 , bench "Blowfish128-input=1024" $ nf (run (undefined :: Blowfish128) cipherInit key16) input1024 , bench "Twofish128-input=1024" $ nf (run (undefined :: Twofish128) cipherInit key16) input1024 , bench "CAST5-128-input=1024" $ nf (run (undefined :: CAST5) cipherInit key16) input1024 , bench "AES128-input=1024" $ nf (run (undefined :: AES128) cipherInit key16) input1024 , bench "AES256-input=1024" $ nf (run (undefined :: AES256) cipherInit key32) input1024 ] where run :: (ByteArray ba, ByteArray key, BlockCipher c) => c -> (key -> CryptoFailable c) -> key -> ba -> ba run _witness initF key input = (ecbEncrypt (throwCryptoError (initF key))) input benchCBC = [ bench "DES-input=1024" $ nf (run (undefined :: DES) cipherInit key8 iv8) input1024 , bench "Blowfish128-input=1024" $ nf (run (undefined :: Blowfish128) cipherInit key16 iv8) input1024 , bench "Twofish128-input=1024" $ nf (run (undefined :: Twofish128) cipherInit key16 iv16) input1024 , bench "CAST5-128-input=1024" $ nf (run (undefined :: CAST5) cipherInit key16 iv8) input1024 , bench "AES128-input=1024" $ nf (run (undefined :: AES128) cipherInit key16 iv16) input1024 , bench "AES256-input=1024" $ nf (run (undefined :: AES256) cipherInit key32 iv16) input1024 ] where run :: (ByteArray ba, ByteArray key, BlockCipher c) => c -> (key -> CryptoFailable c) -> key -> IV c -> ba -> ba run _witness initF key iv input = (cbcEncrypt (throwCryptoError (initF key))) iv input key8 = B.replicate 8 0 key16 = B.replicate 16 0 key32 = B.replicate 32 0 input1024 = B.replicate 1024 0 iv8 :: BlockCipher c => IV c iv8 = maybe (error "iv size 8") id $ makeIV key8 iv16 :: BlockCipher c => IV c iv16 = maybe (error "iv size 16") id $ makeIV key16 benchAE = [ bench "ChaChaPoly1305" $ nf (cp key32) (input64, input1024) , bench "AES-GCM" $ nf (gcm key32) (input64, input1024) , bench "AES-CCM" $ nf (ccm key32) (input64, input1024) , bench "AES-GCM-SIV" $ nf (gcmsiv key32) (input64, input1024) ] where cp k (ini, plain) = let iniState = throwCryptoError $ CP.initialize k (throwCryptoError $ CP.nonce12 nonce12) afterAAD = CP.finalizeAAD (CP.appendAAD ini iniState) (out, afterEncrypt) = CP.encrypt plain afterAAD outtag = CP.finalize afterEncrypt in (outtag, out) gcm k (ini, plain) = let ctx = throwCryptoError (cipherInit k) :: AES256 state = throwCryptoError $ aeadInit AEAD_GCM ctx nonce12 in aeadSimpleEncrypt state ini plain 16 ccm k (ini, plain) = let ctx = throwCryptoError (cipherInit k) :: AES256 mode = AEAD_CCM 1024 CCM_M16 CCM_L3 state = throwCryptoError $ aeadInit mode ctx nonce12 in aeadSimpleEncrypt state ini plain 16 gcmsiv k (ini, plain) = let ctx = throwCryptoError (cipherInit k) :: AES256 iv = throwCryptoError (AESGCMSIV.nonce nonce12) in AESGCMSIV.encrypt ctx iv ini plain input64 = B.replicate 64 0 input1024 = B.replicate 1024 0 nonce12 :: B.ByteString nonce12 = B.replicate 12 0 key32 = B.replicate 32 0 benchECC = [ bench "pointAddTwoMuls-baseline" $ nf run_b (n1, p1, n2, p2) , bench "pointAddTwoMuls-optimized" $ nf run_o (n1, p1, n2, p2) , bench "pointAdd-ECC" $ nf run_c (p1, p2) , bench "pointMul-ECC" $ nf run_d (n1, p2) ] where run_b (n, p, k, q) = ECC.pointAdd c (ECC.pointMul c n p) (ECC.pointMul c k q) run_o (n, p, k, q) = ECC.pointAddTwoMuls c n p k q run_c (p, q) = ECC.pointAdd c p q run_d (n, p) = ECC.pointMul c n p c = ECC.getCurveByName ECC.SEC_p256r1 p1 = ECC.pointBaseMul c n1 p2 = ECC.pointBaseMul c n2 n1 = 0x2ba9daf2363b2819e69b34a39cf496c2458a9b2a21505ea9e7b7cbca42dc7435 n2 = 0xf054a7f60d10b8c2cf847ee90e9e029f8b0e971b09ca5f55c4d49921a11fadc1 benchP256 = [ bench "pointAddTwoMuls-P256" $ nf run_p (n1, p1, n2, p2) , bench "pointAdd-P256" $ nf run_q (p1, p2) , bench "pointMul-P256" $ nf run_t (n1, p1) ] where run_p (n, p, k, q) = P256.pointAdd (P256.pointMul n p) (P256.pointMul k q) run_q (p, q) = P256.pointAdd p q run_t (n, p) = P256.pointMul n p xS = 0xde2444bebc8d36e682edd27e0f271508617519b3221a8fa0b77cab3989da97c9 yS = 0xc093ae7ff36e5380fc01a5aad1e66659702de80f53cec576b6350b243042a256 xT = 0x55a8b00f8da1d44e62f6b3b25316212e39540dc861c89575bb8cf92e35e0986b yT = 0x5421c3209c2d6c704835d82ac4c3dd90f61a8a52598b9e7ab656e9d8c8b24316 p1 = P256.pointFromIntegers (xS, yS) p2 = P256.pointFromIntegers (xT, yT) n1 = throwCryptoError $ P256.scalarFromInteger 0x2ba9daf2363b2819e69b34a39cf496c2458a9b2a21505ea9e7b7cbca42dc7435 n2 = throwCryptoError $ P256.scalarFromInteger 0xf054a7f60d10b8c2cf847ee90e9e029f8b0e971b09ca5f55c4d49921a11fadc1 benchFFDH = map doFFDHBench primes where doFFDHBench (e, p) = let bits = numBits p params = DH.Params { DH.params_p = p, DH.params_g = 2, DH.params_bits = bits } in env (generate e params) $ bench (show bits) . nf (run params) generate e params = do aPriv <- DH.PrivateNumber `fmap` generatePriv e bPriv <- DH.PrivateNumber `fmap` generatePriv e return (aPriv, DH.calculatePublic params bPriv) generatePriv e = generateParams e (Just SetHighest) False run params (priv, pub) = DH.getShared params priv pub -- RFC 7919: prime p with minimal size of exponent primes = [ (225, 0xFFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B423861285C97FFFFFFFFFFFFFFFF) , (275, 0xFFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B66C62E37FFFFFFFFFFFFFFFF) , (325, 0xFFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B669E1EF16E6F52C3164DF4FB7930E9E4E58857B6AC7D5F42D69F6D187763CF1D5503400487F55BA57E31CC7A7135C886EFB4318AED6A1E012D9E6832A907600A918130C46DC778F971AD0038092999A333CB8B7A1A1DB93D7140003C2A4ECEA9F98D0ACC0A8291CDCEC97DCF8EC9B55A7F88A46B4DB5A851F44182E1C68A007E5E655F6AFFFFFFFFFFFFFFFF) , (375, 0xFFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B669E1EF16E6F52C3164DF4FB7930E9E4E58857B6AC7D5F42D69F6D187763CF1D5503400487F55BA57E31CC7A7135C886EFB4318AED6A1E012D9E6832A907600A918130C46DC778F971AD0038092999A333CB8B7A1A1DB93D7140003C2A4ECEA9F98D0ACC0A8291CDCEC97DCF8EC9B55A7F88A46B4DB5A851F44182E1C68A007E5E0DD9020BFD64B645036C7A4E677D2C38532A3A23BA4442CAF53EA63BB454329B7624C8917BDD64B1C0FD4CB38E8C334C701C3ACDAD0657FCCFEC719B1F5C3E4E46041F388147FB4CFDB477A52471F7A9A96910B855322EDB6340D8A00EF092350511E30ABEC1FFF9E3A26E7FB29F8C183023C3587E38DA0077D9B4763E4E4B94B2BBC194C6651E77CAF992EEAAC0232A281BF6B3A739C1226116820AE8DB5847A67CBEF9C9091B462D538CD72B03746AE77F5E62292C311562A846505DC82DB854338AE49F5235C95B91178CCF2DD5CACEF403EC9D1810C6272B045B3B71F9DC6B80D63FDD4A8E9ADB1E6962A69526D43161C1A41D570D7938DAD4A40E329CD0E40E65FFFFFFFFFFFFFFFF) , (400, 0xFFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B669E1EF16E6F52C3164DF4FB7930E9E4E58857B6AC7D5F42D69F6D187763CF1D5503400487F55BA57E31CC7A7135C886EFB4318AED6A1E012D9E6832A907600A918130C46DC778F971AD0038092999A333CB8B7A1A1DB93D7140003C2A4ECEA9F98D0ACC0A8291CDCEC97DCF8EC9B55A7F88A46B4DB5A851F44182E1C68A007E5E0DD9020BFD64B645036C7A4E677D2C38532A3A23BA4442CAF53EA63BB454329B7624C8917BDD64B1C0FD4CB38E8C334C701C3ACDAD0657FCCFEC719B1F5C3E4E46041F388147FB4CFDB477A52471F7A9A96910B855322EDB6340D8A00EF092350511E30ABEC1FFF9E3A26E7FB29F8C183023C3587E38DA0077D9B4763E4E4B94B2BBC194C6651E77CAF992EEAAC0232A281BF6B3A739C1226116820AE8DB5847A67CBEF9C9091B462D538CD72B03746AE77F5E62292C311562A846505DC82DB854338AE49F5235C95B91178CCF2DD5CACEF403EC9D1810C6272B045B3B71F9DC6B80D63FDD4A8E9ADB1E6962A69526D43161C1A41D570D7938DAD4A40E329CCFF46AAA36AD004CF600C8381E425A31D951AE64FDB23FCEC9509D43687FEB69EDD1CC5E0B8CC3BDF64B10EF86B63142A3AB8829555B2F747C932665CB2C0F1CC01BD70229388839D2AF05E454504AC78B7582822846C0BA35C35F5C59160CC046FD8251541FC68C9C86B022BB7099876A460E7451A8A93109703FEE1C217E6C3826E52C51AA691E0E423CFC99E9E31650C1217B624816CDAD9A95F9D5B8019488D9C0A0A1FE3075A577E23183F81D4A3F2FA4571EFC8CE0BA8A4FE8B6855DFE72B0A66EDED2FBABFBE58A30FAFABE1C5D71A87E2F741EF8C1FE86FEA6BBFDE530677F0D97D11D49F7A8443D0822E506A9F4614E011E2A94838FF88CD68C8BB7C5C6424CFFFFFFFFFFFFFFFF) ] data CurveDH = forall c . (EllipticCurveDH c, NFData (Scalar c), NFData (Point c)) => CurveDH c benchECDH = map doECDHBench curves where doECDHBench (name, CurveDH c) = let proxy = Just c -- using Maybe as Proxy in env (generate proxy) $ bench name . nf (run proxy) generate proxy = do KeyPair _ aScalar <- curveGenerateKeyPair proxy KeyPair bPoint _ <- curveGenerateKeyPair proxy return (aScalar, bPoint) run proxy (s, p) = throwCryptoError (ecdh proxy s p) curves = [ ("P256R1", CurveDH Curve_P256R1) , ("P384R1", CurveDH Curve_P384R1) , ("P521R1", CurveDH Curve_P521R1) , ("X25519", CurveDH Curve_X25519) , ("X448", CurveDH Curve_X448) ] data CurveHashECDSA = forall curve hashAlg . (ECDSA.EllipticCurveECDSA curve, NFData (Scalar curve), NFData (Point curve), HashAlgorithm hashAlg) => CurveHashECDSA curve hashAlg benchECDSA = map doECDSABench curveHashes where doECDSABench (name, CurveHashECDSA c hashAlg) = let proxy = Just c -- using Maybe as Proxy in bgroup name [ env (signGenerate proxy) $ bench "sign" . nfIO . signRun proxy hashAlg , env (verifyGenerate proxy hashAlg) $ bench "verify" . nf (verifyRun proxy hashAlg) ] signGenerate proxy = do m <- tenKB s <- curveGenerateScalar proxy return (s, m) signRun proxy hashAlg (priv, msg) = ECDSA.sign proxy priv hashAlg msg verifyGenerate proxy hashAlg = do m <- tenKB KeyPair p s <- curveGenerateKeyPair proxy sig <- ECDSA.sign proxy s hashAlg m return (p, sig, m) verifyRun proxy hashAlg (pub, sig, msg) = ECDSA.verify proxy hashAlg pub sig msg tenKB :: IO Bytes tenKB = getRandomBytes 10240 curveHashes = [ ("secp256r1_sha256", CurveHashECDSA Curve_P256R1 SHA256) , ("secp384r1_sha384", CurveHashECDSA Curve_P384R1 SHA384) , ("secp521r1_sha512", CurveHashECDSA Curve_P521R1 SHA512) ] benchEdDSA = [ bgroup "EdDSA-Ed25519" benchGenEd25519 , bgroup "Ed25519" benchEd25519 ] where benchGen prx alg = [ bench "sign" $ perBatchEnv (genEnv prx alg) (run_gen_sign prx) , bench "verify" $ perBatchEnv (genEnv prx alg) (run_gen_verify prx) ] benchGenEd25519 = benchGen (Just Curve_Edwards25519) SHA512 benchEd25519 = [ bench "sign" $ perBatchEnv ed25519Env run_ed25519_sign , bench "verify" $ perBatchEnv ed25519Env run_ed25519_verify ] msg = B.empty -- empty message = worst-case scenario showing API overhead genEnv prx alg _ = do sec <- EdDSA.generateSecretKey prx let pub = EdDSA.toPublic prx alg sec sig = EdDSA.sign prx sec pub msg return (sec, pub, sig) run_gen_sign prx (sec, pub, _) = return (EdDSA.sign prx sec pub msg) run_gen_verify prx (_, pub, sig) = return (EdDSA.verify prx pub msg sig) ed25519Env _ = do sec <- Ed25519.generateSecretKey let pub = Ed25519.toPublic sec sig = Ed25519.sign sec pub msg return (sec, pub, sig) run_ed25519_sign (sec, pub, _) = return (Ed25519.sign sec pub msg) run_ed25519_verify (_, pub, sig) = return (Ed25519.verify pub msg sig) main = defaultMain [ bgroup "hash" benchHash , bgroup "block-cipher" benchBlockCipher , bgroup "AE" benchAE , bgroup "pbkdf2" benchPBKDF2 , bgroup "bcrypt" benchBCrypt , bgroup "ECC" benchECC , bgroup "P256" benchP256 , bgroup "DH" [ bgroup "FFDH" benchFFDH , bgroup "ECDH" benchECDH ] , bgroup "ECDSA" benchECDSA , bgroup "EdDSA" benchEdDSA , bgroup "F2m" benchF2m ]