{-# LANGUAGE TypeOperators, TypeFamilies, GADTs, FlexibleContexts, ScopedTypeVariables, RankNTypes, NoImplicitPrelude #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Category.Adjunction -- License : BSD-style (see the file LICENSE) -- -- Maintainer : sjoerd@w3future.com -- Stability : experimental -- Portability : non-portable ----------------------------------------------------------------------------- module Data.Category.Adjunction ( -- * Adjunctions Adjunction(..) , mkAdjunction , mkAdjunctionUnits , mkAdjunctionInit , mkAdjunctionTerm , leftAdjunct , rightAdjunct , adjunctionUnit , adjunctionCounit -- * Adjunctions as a category , idAdj , composeAdj , AdjArrow(..) -- * Examples , precomposeAdj , postcomposeAdj , contAdj ) where import Data.Category import Data.Category.Functor import Data.Category.Product import Data.Category.NaturalTransformation data Adjunction c d f g = (Functor f, Functor g, Category c, Category d, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d) => Adjunction { leftAdjoint :: f , rightAdjoint :: g , leftAdjunctN :: Profunctors c d (Costar f) (Star g) , rightAdjunctN :: Profunctors c d (Star g) (Costar f) } -- | Make an adjunction from the hom-set isomorphism. mkAdjunction :: (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d) => f -> g -> (forall a b. Obj d a -> c (f :% a) b -> d a (g :% b)) -> (forall a b. Obj c b -> d a (g :% b) -> c (f :% a) b) -> Adjunction c d f g mkAdjunction f g l r = Adjunction f g (Nat (Costar f) (Star g) (\(Op a :**: _) -> l a)) (Nat (Star g) (Costar f) (\(_ :**: b) -> r b)) -- | Make an adjunction from the unit and counit. mkAdjunctionUnits :: (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d) => f -> g -> (forall a. Obj d a -> Component (Id d) (g :.: f) a) -> (forall a. Obj c a -> Component (f :.: g) (Id c) a) -> Adjunction c d f g mkAdjunctionUnits f g un coun = mkAdjunction f g (\a h -> (g % h) . un a) (\b h -> coun b . (f % h)) -- | Make an adjunction from an initial universal property. mkAdjunctionInit :: (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d) => f -> g -> (forall a. Obj d a -> d a (g :% (f :% a))) -> (forall a b. Obj c b -> d a (g :% b) -> c (f :% a) b) -> Adjunction c d f g mkAdjunctionInit f g un adj = mkAdjunction f g (\a h -> (g % h) . un a) adj -- | Make an adjunction from a terminal universal property. mkAdjunctionTerm :: (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d) => f -> g -> (forall a b. Obj d a -> c (f :% a) b -> d a (g :% b)) -> (forall b. Obj c b -> c (f :% (g :% b)) b) -> Adjunction c d f g mkAdjunctionTerm f g adj coun = mkAdjunction f g adj (\b h -> coun b . (f % h)) leftAdjunct :: Adjunction c d f g -> Obj d a -> c (f :% a) b -> d a (g :% b) leftAdjunct (Adjunction _ _ l _) a h = (l ! (Op a :**: tgt h)) h rightAdjunct :: Adjunction c d f g -> Obj c b -> d a (g :% b) -> c (f :% a) b rightAdjunct (Adjunction _ _ _ r) b h = (r ! (Op (src h) :**: b)) h adjunctionUnit :: Adjunction c d f g -> Nat d d (Id d) (g :.: f) adjunctionUnit adj@(Adjunction f g _ _) = Nat Id (g :.: f) (\a -> leftAdjunct adj a (f % a)) adjunctionCounit :: Adjunction c d f g -> Nat c c (f :.: g) (Id c) adjunctionCounit adj@(Adjunction f g _ _) = Nat (f :.: g) Id (\b -> rightAdjunct adj b (g % b)) idAdj :: Category k => Adjunction k k (Id k) (Id k) idAdj = mkAdjunction Id Id (\_ f -> f) (\_ f -> f) composeAdj :: Adjunction d e f g -> Adjunction c d f' g' -> Adjunction c e (f' :.: f) (g :.: g') composeAdj l@(Adjunction f g _ _) r@(Adjunction f' g' _ _) = mkAdjunction (f' :.: f) (g :.: g') (\a -> leftAdjunct l a . leftAdjunct r (f % a)) (\b -> rightAdjunct r b . rightAdjunct l (g' % b)) data AdjArrow c d where AdjArrow :: (Category c, Category d) => Adjunction c d f g -> AdjArrow c d -- | The category with categories as objects and adjunctions as arrows. instance Category AdjArrow where src (AdjArrow (Adjunction _ _ _ _)) = AdjArrow idAdj tgt (AdjArrow (Adjunction _ _ _ _)) = AdjArrow idAdj AdjArrow x . AdjArrow y = AdjArrow (composeAdj x y) precomposeAdj :: Category e => Adjunction c d f g -> Adjunction (Nat c e) (Nat d e) (Precompose g e) (Precompose f e) precomposeAdj adj@(Adjunction f g _ _) = mkAdjunctionUnits (Precompose g) (Precompose f) (\nh@(Nat h _ _) -> compAssocInv h g f . (nh `o` adjunctionUnit adj) . idPrecompInv h) (\nh@(Nat h _ _) -> idPrecomp h . (nh `o` adjunctionCounit adj) . compAssoc h f g) postcomposeAdj :: Category e => Adjunction c d f g -> Adjunction (Nat e c) (Nat e d) (Postcompose f e) (Postcompose g e) postcomposeAdj adj@(Adjunction f g _ _) = mkAdjunctionUnits (Postcompose f) (Postcompose g) (\nh@(Nat h _ _) -> compAssoc g f h . (adjunctionUnit adj `o` nh) . idPostcompInv h) (\nh@(Nat h _ _) -> idPostcomp h . (adjunctionCounit adj `o` nh) . compAssocInv f g h) contAdj :: Adjunction (Op (->)) (->) (Opposite ((->) :-*: r) :.: OpOpInv (->)) ((->) :-*: r) contAdj = mkAdjunction (Opposite (Hom_X (\x -> x)) :.: OpOpInv) (Hom_X (\x -> x)) (\_ -> \(Op f) -> \b a -> f a b) (\_ -> \f -> Op (\b a -> f a b))