module Data.Category.Adjunction (
  
    Adjunction(..)
  , mkAdjunction
  , leftAdjunct
  , rightAdjunct
  
  
  , initialPropAdjunction
  , terminalPropAdjunction
  
  
  , adjunctionInitialProp
  , adjunctionTerminalProp
  
  
  , AdjArrow(..)
  
  
  , limitAdj
  , colimitAdj
  
  
  , adjunctionMonad
  , adjunctionComonad
  
  
  , contAdj
  
) where
  
import Prelude (($), id, flip)
import Control.Monad.Instances ()
import Data.Category
import Data.Category.Functor
import Data.Category.NaturalTransformation
import Data.Category.Limit
import qualified Data.Category.Monoidal as M
data Adjunction c d f g = (Functor f, Functor g, Category c, Category d, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
  => Adjunction
  { leftAdjoint  :: f
  , rightAdjoint :: g
  , unit         :: Nat d d (Id d) (g :.: f)
  , counit       :: Nat c c (f :.: g) (Id c)
  }
mkAdjunction :: (Functor f, Functor g, Category c, Category d, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
  => f -> g 
  -> (forall a. Obj d a -> Component (Id d) (g :.: f) a) 
  -> (forall a. Obj c a -> Component (f :.: g) (Id c) a)
  -> Adjunction c d f g
mkAdjunction f g un coun = Adjunction f g (Nat Id (g :.: f) un) (Nat (f :.: g) Id coun)
leftAdjunct :: Adjunction c d f g -> Obj d a -> c (f :% a) b -> d a (g :% b)
leftAdjunct (Adjunction _ g un _) i h = (g % h) . (un ! i)
rightAdjunct :: Adjunction c d f g -> Obj c b -> d a (g :% b) -> c (f :% a) b
rightAdjunct (Adjunction f _ _ coun) i h = (coun ! i) . (f % h)
adjunctionInitialProp :: Adjunction c d f g -> Obj d y -> InitialUniversal y g (f :% y)
adjunctionInitialProp adj@(Adjunction f _ un _) y = InitialUniversal (f % y) (un ! y) (rightAdjunct adj)
adjunctionTerminalProp :: Adjunction c d f g -> Obj c x -> TerminalUniversal x f (g :% x)
adjunctionTerminalProp adj@(Adjunction _ g _ coun) x = TerminalUniversal (g % x) (coun ! x) (leftAdjunct adj)
initialPropAdjunction :: forall f g c d. (Functor f, Functor g, Category c, Category d, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
  => f -> g -> (forall y. Obj d y -> InitialUniversal y g (f :% y)) -> Adjunction c d f g
initialPropAdjunction f g univ = mkAdjunction f g un coun
  where
    coun :: forall a. Obj c a -> c (f :% (g :% a)) a
    coun a = initialFactorizer (univ (g % a)) a (g % a)
    un   :: forall a. Obj d a -> d a (g :% (f :% a))
    un   a = initialMorphism (univ a)
   
terminalPropAdjunction :: forall f g c d. (Functor f, Functor g, Category c, Category d, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
  => f -> g -> (forall x. Obj c x -> TerminalUniversal x f (g :% x)) -> Adjunction c d f g
terminalPropAdjunction f g univ = mkAdjunction f g un coun
  where
    un   :: forall a. Obj d a -> d a (g :% (f :% a))
    un   a = terminalFactorizer (univ (f % a)) a (f % a)
    coun :: forall a. Obj c a -> c (f :% (g :% a)) a
    coun a = terminalMorphism (univ a)
    
data AdjArrow c d where
  AdjArrow :: (Category c, Category d) => Adjunction c d f g -> AdjArrow (CatW c) (CatW d)
instance Category AdjArrow where
  
  src (AdjArrow (Adjunction _ _ _ _)) = AdjArrow $ mkAdjunction Id Id id id
  tgt (AdjArrow (Adjunction _ _ _ _)) = AdjArrow $ mkAdjunction Id Id id id
  
  AdjArrow (Adjunction f g u c) . AdjArrow (Adjunction f' g' u' c') = AdjArrow $ 
    mkAdjunction (f' :.: f) (g :.: g') (\i -> ((Wrap g f % u') ! i) . (u ! i)) (\i -> (c' ! i) . ((Wrap f' g' % c) ! i))
limitAdj :: forall j (~>). HasLimits j (~>) 
  => LimitFunctor j (~>) 
  -> Adjunction (Nat j (~>)) (~>) (Diag j (~>)) (LimitFunctor j (~>))
limitAdj LimitFunctor = terminalPropAdjunction Diag LimitFunctor (\f @ Nat{} -> limitUniv f)
colimitAdj :: forall j (~>). HasColimits j (~>) 
  => ColimitFunctor j (~>) 
  -> Adjunction (~>) (Nat j (~>)) (ColimitFunctor j (~>)) (Diag j (~>))
colimitAdj ColimitFunctor = initialPropAdjunction ColimitFunctor Diag (\f @ Nat{} -> colimitUniv f)
adjunctionMonad :: Adjunction c d f g -> M.Monad (g :.: f)
adjunctionMonad (Adjunction f g un coun) = M.mkMonad (g :.: f) (un !) ((Wrap g f % coun) !)
adjunctionComonad :: Adjunction c d f g -> M.Comonad (f :.: g)
adjunctionComonad (Adjunction f g un coun) = M.mkComonad (f :.: g) (coun !) ((Wrap f g % un) !)
data Cont1 r = Cont1
type instance Dom (Cont1 r) = (->)
type instance Cod (Cont1 r) = Op (->)
type instance (Cont1 r) :% a = a -> r
instance Functor (Cont1 r) where 
  Cont1 % f = Op (. f)
data Cont2 r = Cont2
type instance Dom (Cont2 r) = Op (->)
type instance Cod (Cont2 r) = (->)
type instance (Cont2 r) :% a = a -> r
instance Functor (Cont2 r) where 
  Cont2 % (Op f) = (. f)
contAdj :: Adjunction (Op (->)) (->) (Cont1 r) (Cont2 r)
contAdj = mkAdjunction Cont1 Cont2 (\_ -> flip ($)) (\_ -> Op (flip ($)))