module Data.Category.Comma where
import Data.Category
import Data.Category.Functor
import Data.Category.Limit
import Data.Category.RepresentableFunctor
data CommaO :: * -> * -> * -> * where
  CommaO :: (Cod t ~ k, Cod s ~ k)
    => Obj (Dom t) a -> k (t :% a) (s :% b) -> Obj (Dom s) b -> CommaO t s (a, b)
    
data (:/\:) :: * -> * -> * -> * -> * where 
  CommaA :: 
    CommaO t s (a, b) ->
    Dom t a a' -> 
    Dom s b b' -> 
    CommaO t s (a', b') ->
    (t :/\: s) (a, b) (a', b')
commaId :: CommaO t s (a, b) -> Obj (t :/\: s) (a, b)
commaId o@(CommaO a _ b) = CommaA o a b o
instance (Category (Dom t), Category (Dom s)) => Category (t :/\: s) where
    
  src (CommaA so _ _ _) = commaId so
  tgt (CommaA _ _ _ to) = commaId to
  
  (CommaA _ g h to) . (CommaA so g' h' _) = CommaA so (g . g') (h . h') to
type (f `ObjectsFUnder` a) = ConstF f a :/\: f
type (f `ObjectsFOver`  a) = f :/\: ConstF f a
type (c `ObjectsUnder` a) = Id c `ObjectsFUnder` a
type (c `ObjectsOver`  a) = Id c `ObjectsFOver`  a
initialUniversalComma :: forall u x c a a_
                       . (Functor u, c ~ (u `ObjectsFUnder` x), HasInitialObject c, (a_, a) ~ InitialObject c)
                      => u -> InitialUniversal x u a
initialUniversalComma u = case initialObject :: Obj c (a_, a) of
  CommaA (CommaO _ mor a) _ _ _ -> 
    initialUniversal u a mor factorizer
      where
        factorizer :: forall y. Obj (Dom u) y -> Cod u x (u :% y) -> Dom u a y
        factorizer y arr = case (init (commaId (CommaO y arr y))) of CommaA _ _ f _ -> f
          where
            init :: Obj c (y, y) -> c (a_, a) (y, y)
            init = initialize
terminalUniversalComma :: forall u x c a a_
                        . (Functor u, c ~ (u `ObjectsFOver` x), HasTerminalObject c, (a, a_) ~ TerminalObject c)
                       => u -> TerminalUniversal x u a
terminalUniversalComma u = case terminalObject :: Obj c (a, a_) of
  CommaA (CommaO a mor _) _ _ _ ->
    terminalUniversal u a mor factorizer
      where
        factorizer :: forall y. Obj (Dom u) y -> Cod u (u :% y) x -> Dom u y a
        factorizer y arr = case (term (commaId (CommaO y arr y))) of CommaA _ f _ _ -> f
          where
            term :: Obj c (y, y) -> c (y, y) (a, a_)
            term = terminate