{-# LANGUAGE BangPatterns #-} -- ---------------------------------------------------------------------------- {- | Module : Data.StringMap.Strict Copyright : Copyright (C) 2009-2014 Uwe Schmidt, Sebastian Philipp License : MIT Maintainer : Uwe Schmidt (uwe@fh-wedel.de), Sebastian Philipp (sebastian@spawnhost.de) Stability : experimental Portability: not portable An efficient implementation of maps from strings to arbitrary values. Values can be associated with an arbitrary [Char] key. Searching for keys is very fast. The main differences to Data.Map and Data.IntMap are the special 'prefixFind' functions, which can be used to perform prefix queries. The interface is heavily borrowed from "Data.Map" and "Data.IntMap". Most other function names clash with "Prelude" names, therefore this module is usually imported @qualified@, e.g. > import Data.StringMap.Strict (StringMap) > import qualified Data.StringMap.Strict as M Many functions have a worst-case complexity of /O(min(n,L))/. This means that the operation can become linear with the number of elements with a maximum of /L/, the length of the key (the number of bytes in the list). The functions for searching a prefix have a worst-case complexity of /O(max(L,R))/. This means that the operation can become linear with /R/, the number of elements found for the prefix, with a minimum of /L/. This module has versions of the \"modifying\" operations, like insert, update, delete and map, that force evaluating the attribute values before doing the operation. All \"reading\" operations and the data types are reexported from Data.StringMap.Base. -} -- ---------------------------------------------------------------------------- module Data.StringMap.Strict ( -- * Map type StringMap() , Key -- * Operators , (!) -- * Query , value , valueWithDefault , null , size , member , lookup , findWithDefault , prefixFind , prefixFindWithKey , prefixFindWithKeyBF , lookupRange -- * Construction , empty , singleton -- ** Insertion , insert , insertWith , insertWithKey -- ** Delete\/Update , adjust , adjustWithKey , delete , update , updateWithKey -- * Combine -- ** Union , union , unionWith , unionMapWith , unionWithKey -- ** Difference , difference , differenceWith , differenceWithKey -- ** Interset , intersection , intersectionWith -- * Traversal -- ** Map , map , mapWithKey , mapM , mapWithKeyM , mapMaybe -- * Folds , fold , foldWithKey , foldr , foldrWithKey , foldl , foldlWithKey -- * Conversion , keys , elems -- ** Lists , fromList , toList , toListShortestFirst -- ** Maps , fromMap , toMap -- * Prefix and Fuzzy Search , prefixFilter -- fuzzy search , prefixFilterNoCase , lookupNoCase ) where import Data.StringMap.Base hiding (adjust, adjustWithKey, delete, fromList, insert, insertWith, insertWithKey, map, mapM, mapMaybe, mapWithKey, mapWithKeyM, singleton, union, unionWith, unionMapWith, update, updateWithKey) import qualified Data.StringMap.Base as Base import Data.StringMap.FuzzySearch import Prelude hiding (foldl, foldr, lookup, map, mapM, null, succ) import qualified Data.List as L -- ---------------------------------------- normError :: String -> a normError = normError' "Data.StringMap.Strict" -- ---------------------------------------- -- | /O(1)/ Create a map with a single element. -- -- the attribute value is evaluated to WHNF singleton :: Key -> a -> StringMap a singleton k !v = Base.singleton k v -- anyseq (fromKey k) (val v empty) {-# INLINE singleton #-} -- | /O(min(n,L))/ Insert a new key and value into the map. If the key is already present in -- the map, the associated value will be replaced with the new value. insert :: Key -> a -> StringMap a -> StringMap a insert !k !v = insertWith const k v {-# INLINE insert #-} -- | /O(min(n,L))/ Insert with a combining function. If the key is already present in the map, -- the value of @f new_value old_value@ will be inserted. insertWith :: (a -> a -> a) -> Key -> a -> StringMap a -> StringMap a insertWith f !k v t = insert' f v k t {-# INLINE insertWith #-} -- | /O(min(n,L))/ Insert with a combining function. If the key is already present in the map, -- the value of @f key new_value old_value@ will be inserted. insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> StringMap a -> StringMap a insertWithKey f !k = insertWith (f k) k -- | /O(min(n,L))/ Updates a value at a given key (if that key is in the trie) or deletes the -- element if the result of the updating function is 'Nothing'. If the key is not found, the trie -- is returned unchanged. -- The updated value is evaluated to WHNF before insertion. update :: (a -> Maybe a) -> Key -> StringMap a -> StringMap a update = update' {-# INLINE update #-} -- | /O(min(n,L))/ Updates a value at a given key (if that key is in the trie) or deletes the -- element if the result of the updating function is 'Nothing'. If the key is not found, the trie -- is returned unchanged. -- The updated value is evaluated to WHNF before insertion. updateWithKey :: (Key -> a -> Maybe a) -> Key -> StringMap a -> StringMap a updateWithKey f k = update' (f k) k {-# INLINE updateWithKey #-} -- | /O(min(n,L))/ Delete an element from the map. If no element exists for the key, the map -- remains unchanged. delete :: Key -> StringMap a -> StringMap a delete = update' (const Nothing) {-# INLINE delete #-} adjust :: (a -> a) -> Key -> StringMap a -> StringMap a adjust f = update' (Just . f) {-# INLINE adjust #-} adjustWithKey :: (Key -> a -> a) -> Key -> StringMap a -> StringMap a adjustWithKey f k = update' (Just . f k) k {-# INLINE adjustWithKey #-} -- ---------------------------------------- -- -- internal functions forcing evaluation of attribute values to WHNF -- -- ---------------------------------------- insert' :: (a -> a -> a) -> a -> Key -> StringMap a -> StringMap a insert' f v k0 = ins k0 . norm where ins' = insert' f v ins k (Branch c' s' n') = case k of [] -> val v (branch c' s' n') (c : k1) | c < c' -> branch c (singleton k1 v) (branch c' s' n') | c == c' -> branch c (ins' k1 s') n' | otherwise -> branch c' s' (ins' k n') ins k Empty = singleton k v -- WHNF for v is done in singleton ins k (Val v' t') = case k of [] -> flip val t' $! f v v' -- force WHNF of attr value _ -> val v' (ins' k t') ins _ _ = normError "insert'" -- ---------------------------------------- update' :: (a -> Maybe a) -> Key -> StringMap a -> StringMap a update' f k0 = upd k0 . norm where upd' = update' f upd k (Branch c' s' n') = case k of [] -> branch c' s' n' (c : k1) | c < c' -> branch c' s' n' | c == c' -> branch c (upd' k1 s') n' | otherwise -> branch c' s' (upd' k n') upd _ Empty = empty upd k (Val v' t') = case k of [] -> case f v' of Nothing -> t' Just !v'' -> val v'' t' -- force WHNF of new attr value _ -> val v' (upd' k t') upd _ _ = normError "update'" -- ---------------------------------------- -- | /O(n+m)/ Left-biased union of two maps. It prefers the first map when duplicate keys are -- encountered, i.e. ('union' == 'unionWith' 'const'). union :: StringMap a -> StringMap a -> StringMap a union = union' const {-# INLINE union #-} -- | /O(n+m)/ 'union' with a combining function. unionWith :: (a -> a -> a) -> StringMap a -> StringMap a -> StringMap a unionWith = union' {-# INLINE unionWith #-} -- like union' from Base, but attr value is evaluated to WHNF union' :: (a -> a -> a) -> StringMap a -> StringMap a -> StringMap a union' f pt1 pt2 = uni (norm pt1) (norm pt2) where uni' t1' t2' = union' f (norm t1') (norm t2') uni Empty Empty = empty uni Empty (Val v2 t2) = val v2 t2 uni Empty (Branch c2 s2 n2) = branch c2 s2 n2 uni (Val v1 t1) Empty = val v1 t1 uni (Val v1 t1) (Val v2 t2) = (val $! f v1 v2) (uni' t1 t2) -- force attr value evaluation to WHNF uni (Val v1 t1) t2@(Branch _ _ _) = val v1 (uni' t1 t2) uni (Branch c1 s1 n1) Empty = branch c1 s1 n1 uni t1@(Branch _ _ _ ) (Val v2 t2) = val v2 (uni' t1 t2) uni t1@(Branch c1 s1 n1) t2@(Branch c2 s2 n2) | c1 < c2 = branch c1 s1 (uni' n1 t2) | c1 > c2 = branch c2 s2 (uni' t1 n2) | otherwise = branch c1 (uni' s1 s2) (uni' n1 n2) uni _ _ = normError "union'" -- ---------------------------------------- -- | Generalisation of 'unionWith'. The second map may have another attribute type than the first one. -- Conversion and merging of the maps is done in a single step. -- This is much more efficient than mapping the second map and then call 'unionWith' -- -- @unionWithConf to (\ x y -> x `op` to y) m1 m2 = unionWith op m1 (fmap to m2)@ unionMapWith :: (b -> a) -> (a -> b -> a) -> StringMap a -> StringMap b -> StringMap a unionMapWith = unionG' unionG' :: (b -> a) -> (a -> b -> a) -> StringMap a -> StringMap b -> StringMap a unionG' to f pt1 pt2 = uni (norm pt1) (norm pt2) where uni' t1' t2' = unionG' to f (norm t1') (norm t2') uni Empty Empty = empty uni Empty (Val v2 t2) = (val $! (to v2)) (map to t2) uni Empty (Branch c2 s2 n2) = branch c2 (map to s2) (map to n2) uni (Val v1 t1) Empty = val v1 t1 uni (Val v1 t1) (Val v2 t2) = (val $! (f v1 v2)) (uni' t1 t2) uni (Val v1 t1) t2@(Branch _ _ _) = val v1 (uni' t1 t2) uni (Branch c1 s1 n1) Empty = branch c1 s1 n1 uni t1@(Branch _ _ _ ) (Val v2 t2) = (val $! (to v2)) (uni' t1 t2) uni t1@(Branch c1 s1 n1) t2@(Branch c2 s2 n2) | c1 < c2 = branch c1 s1 (uni' n1 t2) | c1 > c2 = branch c2 (map to s2) (uni' t1 n2) | otherwise = branch c1 (uni' s1 s2) (uni' n1 n2) uni _ _ = normError "union'" -- ---------------------------------------- -- | /O(n)/ Map a function over all values in the string map. map :: (a -> b) -> StringMap a -> StringMap b map f = mapWithKey (const f) {-# INLINE map #-} -- | /O(n)/ Same as 'map', but with an additional paramter mapWithKey :: (Key -> a -> b) -> StringMap a -> StringMap b mapWithKey f = map' f id {-# INLINE mapWithKey #-} -- map functions forcing evaluation of attr to WHNF map' :: (Key -> a -> b) -> (Key -> Key) -> StringMap a -> StringMap b map' _ _ (Empty) = Empty map' f k (Val v t) = (Val $! (f (k []) v)) (map' f k t) map' f k (Branch c s n) = Branch c (map' f ((c :) . k) s) (map' f k n) map' f k (Leaf v) = Leaf $! (f (k []) v) map' f k (Last c s) = Last c (map' f ((c :) . k) s) map' f k (LsSeq cs s) = LsSeq cs (map' f ((toKey cs ++) . k) s) map' f k (BrSeq cs s n) = BrSeq cs (map' f ((toKey cs ++) . k) s) (map' f k n) map' f k (LsSeL cs v) = LsSeL cs $! (f (k []) v) map' f k (BrSeL cs v n) =(BrSeL cs $! (f (k []) v)) (map' f k n) map' f k (LsVal c v) = LsVal c $! (f (k []) v) map' f k (BrVal c v n) =(BrVal c $! (f (k []) v)) (map' f k n) -- | /O(n)/ Updates a value or deletes the element, -- if the result of the updating function is 'Nothing'. mapMaybe :: (a -> Maybe b) -> StringMap a -> StringMap b mapMaybe = mapMaybe' {-# INLINE mapMaybe #-} mapMaybe' :: (a -> Maybe b) -> StringMap a -> StringMap b mapMaybe' f = upd . norm where upd' = mapMaybe' f upd (Branch c' s' n') = branch c' (upd' s') (upd' n') upd Empty = empty upd (Val v' t') = case f v' of Nothing -> t Just !v'' -> val v'' t -- force WHNF for v where t = upd' t' upd _ = normError "update'" -- ---------------------------------------- -- | Monadic 'map' mapM :: Monad m => (a -> m b) -> StringMap a -> m (StringMap b) mapM f = mapWithKeyM (const f) {-# INLINE mapM #-} -- | Monadic 'mapWithKey' mapWithKeyM :: Monad m => (Key -> a -> m b) -> StringMap a -> m (StringMap b) mapWithKeyM f = mapM'' f id {-# INLINE mapWithKeyM #-} mapM'' :: Monad m => (Key -> a -> m b) -> (Key -> Key) -> StringMap a -> m (StringMap b) mapM'' f k = mapn . norm where mapn' = mapM'' f mapn Empty = return $ empty mapn (Val v t) = do !v' <- f (k []) v -- force WHNF for v' t' <- mapn' k t return $ val v' t' mapn (Branch c s n) = do s' <- mapn' ((c :) . k) s n' <- mapn' k n return $ branch c s' n' mapn _ = normError "mapM''" -- ---------------------------------------- -- | /O(n)/ Creates a string map from a list of key\/value pairs. fromList :: [(Key, a)] -> StringMap a fromList = L.foldl' (\p (k, v) -> insert k v p) empty