{-# LANGUAGE BangPatterns #-} {-# LANGUAGE ExplicitNamespaces #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} module DataFrame.Operations.Subset where import qualified Data.List as L import qualified Data.Map as M import qualified Data.Text as T import qualified Data.Vector as V import qualified Data.Vector.Generic as VG import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM import qualified Prelude import Control.Exception (throw) import Control.Monad.ST import Data.Function ((&)) import Data.Maybe (fromJust, fromMaybe, isJust, isNothing) import Data.Type.Equality (TestEquality (..)) import DataFrame.Errors (DataFrameException (..), TypeErrorContext (..)) import DataFrame.Internal.Column import DataFrame.Internal.DataFrame (DataFrame (..), empty, getColumn) import DataFrame.Internal.Expression import DataFrame.Operations.Core import DataFrame.Operations.Transformations (apply) import System.Random import Type.Reflection import Prelude hiding (filter, take) -- | O(k * n) Take the first n rows of a DataFrame. take :: Int -> DataFrame -> DataFrame take n d = d{columns = V.map (takeColumn n') (columns d), dataframeDimensions = (n', c)} where (r, c) = dataframeDimensions d n' = clip n 0 r -- | O(k * n) Take the last n rows of a DataFrame. takeLast :: Int -> DataFrame -> DataFrame takeLast n d = d { columns = V.map (takeLastColumn n') (columns d) , dataframeDimensions = (n', c) } where (r, c) = dataframeDimensions d n' = clip n 0 r -- | O(k * n) Drop the first n rows of a DataFrame. drop :: Int -> DataFrame -> DataFrame drop n d = d { columns = V.map (sliceColumn n' (max (r - n') 0)) (columns d) , dataframeDimensions = (max (r - n') 0, c) } where (r, c) = dataframeDimensions d n' = clip n 0 r -- | O(k * n) Drop the last n rows of a DataFrame. dropLast :: Int -> DataFrame -> DataFrame dropLast n d = d{columns = V.map (sliceColumn 0 n') (columns d), dataframeDimensions = (n', c)} where (r, c) = dataframeDimensions d n' = clip (r - n) 0 r -- | O(k * n) Take a range of rows of a DataFrame. range :: (Int, Int) -> DataFrame -> DataFrame range (start, end) d = d { columns = V.map (sliceColumn (clip start 0 r) n') (columns d) , dataframeDimensions = (n', c) } where (r, c) = dataframeDimensions d n' = clip (end - start) 0 r clip :: Int -> Int -> Int -> Int clip n left right = min right $ max n left {- | O(n * k) Filter rows by a given condition. > filter "x" even df -} filter :: forall a. (Columnable a) => -- | Column to filter by T.Text -> -- | Filter condition (a -> Bool) -> -- | Dataframe to filter DataFrame -> DataFrame filter filterColumnName condition df = case getColumn filterColumnName df of Nothing -> throw $ ColumnNotFoundException filterColumnName "filter" (M.keys $ columnIndices df) Just (BoxedColumn (column :: V.Vector b)) -> filterByVector filterColumnName column condition df Just (OptionalColumn (column :: V.Vector b)) -> filterByVector filterColumnName column condition df Just (UnboxedColumn (column :: VU.Vector b)) -> filterByVector filterColumnName column condition df filterByVector :: forall a b v. (VG.Vector v b, Columnable a, Columnable b) => T.Text -> v b -> (a -> Bool) -> DataFrame -> DataFrame filterByVector filterColumnName column condition df = case testEquality (typeRep @a) (typeRep @b) of Nothing -> throw $ TypeMismatchException ( MkTypeErrorContext { userType = Right $ typeRep @a , expectedType = Right $ typeRep @b , errorColumnName = Just (T.unpack filterColumnName) , callingFunctionName = Just "filter" } ) Just Refl -> let ixs = indexes condition column in df { columns = V.map (atIndicesStable ixs) (columns df) , dataframeDimensions = (VG.length ixs, snd (dataframeDimensions df)) } indexes :: (VG.Vector v a) => (a -> Bool) -> v a -> VU.Vector Int indexes condition cols = runST $ do ixs <- VUM.new 8192 (!icount, _, _, !ixs') <- VG.foldM ( \(!icount, !vcount, !cap, mv) v -> do if not (condition v) then pure (icount, vcount + 1, cap, mv) else do let shouldGrow = icount == cap mv' <- if shouldGrow then VUM.grow mv cap else pure mv VUM.write mv' icount vcount pure (icount + 1, vcount + 1, cap + (cap * fromEnum shouldGrow), mv') ) (0, 0, 8192, ixs) cols VU.freeze (VUM.slice 0 icount ixs') {- | O(k) a version of filter where the predicate comes first. > filterBy even "x" df -} filterBy :: (Columnable a) => (a -> Bool) -> T.Text -> DataFrame -> DataFrame filterBy = flip filter {- | O(k) filters the dataframe with a boolean expression. > filterWhere (F.col @Int x + F.col y F.> 5) df -} filterWhere :: Expr Bool -> DataFrame -> DataFrame filterWhere expr df = let (TColumn col) = case interpret @Bool df expr of Left e -> throw e Right c -> c indexes = case findIndices (== True) col of Right ixs -> ixs Left e -> throw e c' = snd $ dataframeDimensions df in df { columns = V.map (atIndicesStable indexes) (columns df) , dataframeDimensions = (VU.length indexes, c') } {- | O(k) removes all rows with `Nothing` in a given column from the dataframe. > filterJust "col" df -} filterJust :: T.Text -> DataFrame -> DataFrame filterJust name df = case getColumn name df of Nothing -> throw $ ColumnNotFoundException name "filterJust" (M.keys $ columnIndices df) Just column@(OptionalColumn (col :: V.Vector (Maybe a))) -> filter @(Maybe a) name isJust df & apply @(Maybe a) fromJust name Just column -> df {- | O(k) returns all rows with `Nothing` in a give column. > filterNothing "col" df -} filterNothing :: T.Text -> DataFrame -> DataFrame filterNothing name df = case getColumn name df of Nothing -> throw $ ColumnNotFoundException name "filterNothing" (M.keys $ columnIndices df) Just (OptionalColumn (col :: V.Vector (Maybe a))) -> filter @(Maybe a) name isNothing df _ -> df {- | O(n * k) removes all rows with `Nothing` from the dataframe. > filterAllJust df -} filterAllJust :: DataFrame -> DataFrame filterAllJust df = foldr filterJust df (columnNames df) {- | O(k) cuts the dataframe in a cube of size (a, b) where a is the length and b is the width. > cube (10, 5) df -} cube :: (Int, Int) -> DataFrame -> DataFrame cube (length, width) = take length . selectBy [ColumnIndexRange (0, width - 1)] {- | O(n) Selects a number of columns in a given dataframe. > select ["name", "age"] df -} select :: [T.Text] -> DataFrame -> DataFrame select cs df | L.null cs = empty | any (`notElem` columnNames df) cs = throw $ ColumnNotFoundException (T.pack $ show $ cs L.\\ columnNames df) "select" (columnNames df) | otherwise = L.foldl' addKeyValue empty cs where addKeyValue d k = fromMaybe df $ do col <- getColumn k df pure $ insertColumn k col d data SelectionCriteria = ColumnProperty (Column -> Bool) | ColumnNameProperty (T.Text -> Bool) | ColumnTextRange (T.Text, T.Text) | ColumnIndexRange (Int, Int) | ColumnName T.Text {- | Criteria for selecting a column by name. > selectBy [byName "Age"] df equivalent to: > select ["Age"] df -} byName :: T.Text -> SelectionCriteria byName = ColumnName {- | Criteria for selecting columns whose property satisfies given predicate. > selectBy [byProperty isNumeric] df -} byProperty :: (Column -> Bool) -> SelectionCriteria byProperty = ColumnProperty {- | Criteria for selecting columns whose name satisfies given predicate. > selectBy [byNameProperty (T.isPrefixOf "weight")] df -} byNameProperty :: (T.Text -> Bool) -> SelectionCriteria byNameProperty = ColumnNameProperty {- | Criteria for selecting columns whose names are in the given lexicographic range (inclusive). > selectBy [byNameRange ("a", "c")] df -} byNameRange :: (T.Text, T.Text) -> SelectionCriteria byNameRange = ColumnTextRange {- | Criteria for selecting columns whose indices are in the given (inclusive) range. > selectBy [byIndexRange (0, 5)] df -} byIndexRange :: (Int, Int) -> SelectionCriteria byIndexRange = ColumnIndexRange -- | O(n) select columns by column predicate name. selectBy :: [SelectionCriteria] -> DataFrame -> DataFrame selectBy xs df = select columnsWithProperties df where columnsWithProperties = L.foldl' columnWithProperty [] xs columnWithProperty acc (ColumnName name) = acc ++ [name] columnWithProperty acc (ColumnNameProperty f) = acc ++ L.filter f (columnNames df) columnWithProperty acc (ColumnTextRange (from, to)) = acc ++ reverse (Prelude.dropWhile (to /=) $ reverse $ dropWhile (from /=) (columnNames df)) columnWithProperty acc (ColumnIndexRange (from, to)) = acc ++ Prelude.take (to - from + 1) (Prelude.drop from (columnNames df)) columnWithProperty acc (ColumnProperty f) = acc ++ map fst (L.filter (\(k, v) -> v `elem` ixs) (M.toAscList (columnIndices df))) where ixs = V.ifoldl' (\acc i c -> if f c then i : acc else acc) [] (columns df) {- | O(n) inverse of select > exclude ["Name"] df -} exclude :: [T.Text] -> DataFrame -> DataFrame exclude cs df = let keysToKeep = columnNames df L.\\ cs in select keysToKeep df {- | Sample a dataframe. The double parameter must be between 0 and 1 (inclusive). ==== __Example__ @ ghci> import System.Random ghci> D.sample (mkStdGen 137) 0.1 df @ -} sample :: (RandomGen g) => g -> Double -> DataFrame -> DataFrame sample pureGen p df = let rand = generateRandomVector pureGen (fst (dataframeDimensions df)) in df & insertUnboxedVector "__rand__" rand & filterWhere (BinaryOp "geq" (>=) (Col @Double "__rand__") (Lit (1 - p))) & exclude ["__rand__"] {- | Split a dataset into two. The first in the tuple gets a sample of p (0 <= p <= 1) and the second gets (1 - p). This is useful for creating test and train splits. ==== __Example__ @ ghci> import System.Random ghci> D.randomSplit (mkStdGen 137) 0.9 df @ -} randomSplit :: (RandomGen g) => g -> Double -> DataFrame -> (DataFrame, DataFrame) randomSplit pureGen p df = let rand = generateRandomVector pureGen (fst (dataframeDimensions df)) withRand = df & insertUnboxedVector "__rand__" rand in ( withRand & filterWhere (BinaryOp "leq" (<=) (Col @Double "__rand__") (Lit p)) & exclude ["__rand__"] , withRand & filterWhere (BinaryOp "gt" (>) (Col @Double "__rand__") (Lit p)) & exclude ["__rand__"] ) {- | Creates n folds of a dataframe. ==== __Example__ @ ghci> import System.Random ghci> D.kFolds (mkStdGen 137) 5 df @ -} kFolds :: (RandomGen g) => g -> Int -> DataFrame -> [DataFrame] kFolds pureGen folds df = let rand = generateRandomVector pureGen (fst (dataframeDimensions df)) withRand = df & insertUnboxedVector "__rand__" rand partitionSize = 1 / (fromIntegral folds) singleFold n d = d & filterWhere ( BinaryOp "geq" (>=) (Col @Double "__rand__") (Lit (fromIntegral n * partitionSize)) ) go (-1) _ = [] go n d = let d' = singleFold n d d'' = d & filterWhere ( BinaryOp "lt" (<) (Col @Double "__rand__") (Lit (fromIntegral n * partitionSize)) ) in d' : go (n - 1) d'' in map (exclude ["__rand__"]) (go (folds - 1) withRand) generateRandomVector :: (RandomGen g) => g -> Int -> VU.Vector Double generateRandomVector pureGen k = VU.fromList $ go pureGen k where go g 0 = [] go g n = let (v, g') = uniformR (0 :: Double, 1 :: Double) g in v : go g' (n - 1)