cabal-version: 3.0 name: dataframe-hasktorch version: 0.1.0.2 synopsis: Converts between dataframes and hasktorch tensors description: This package provides seamless conversion between dataframes and hasktorch tensors, bridging the gap between data manipulation and machine learning workflows. Key features: * Convert dataframes to floating-point or integer tensors for ML training * Automatic handling of multi-column and single-column dataframes * Smart dimensional handling (1D tensors for single columns, 2D for multiple) * Type-safe conversions with comprehensive error handling Typical workflow: load and transform data using dataframes, then convert to tensors for training neural networks with hasktorch. license: MIT license-file: LICENSE author: Michael Chavinda maintainer: mschavinda@gmail.com category: Data build-type: Simple extra-doc-files: CHANGELOG.md common warnings ghc-options: -Wall library import: warnings exposed-modules: DataFrame.Hasktorch build-depends: base >= 4.11 && < 5, vector ^>= 0.13, dataframe >= 0.3.3.3 && < 0.6, hasktorch >= 0.2.1.6 && < 0.3 hs-source-dirs: src default-language: Haskell2010 test-suite dataframe-hasktorch-test import: warnings default-language: Haskell2010 type: exitcode-stdio-1.0 hs-source-dirs: test main-is: Main.hs build-depends: base >= 4.11 && < 5, dataframe-hasktorch