{-| Module : DeepControl.Commutative Description : Commutative Functor. Copyright : Conor McBride and Ross Paterson 2005, (C) 2015 KONISHI Yohsuke License : BSD-style (see the LICENSE file in the distribution) Maintainer : ocean0yohsuke@gmail.com Stability : experimental Portability : --- This module is made of @'Data.Traversable'@, distilling most function names polluted with action kind of concepts into crystalized(static) ones. -} module DeepControl.Commutative ( -- * Level-1 -- ** The 'Commutative' class Commutative(..), -- ** Utility functions cmap, cfor, -- ** General definitions for superclass methods fmapDefault, foldMapDefault, -- * Level-2 sink2, float2, -- * Level-3 sink3, float3, -- * Level-4 sink4, float4, -- * Level-5 sink5, float5, ) where import DeepControl.Applicative import Data.Monoid ------------------------------------------------------------------------------ -- Level-1 -- | -- class (Applicative c) => Commutative c where -- | This method is equivalent for @'Data.Traversable.sequenceA'@ just except the name. -- The only difference is the name "commute", that is to say from which no action kind of concepts smell. commute :: Applicative f => c (f a) -> f (c a) -- | Do @fmap f@ then commute, equivalent for @'Data.Traversable.traverse'@. cmap :: (Applicative f, Commutative c) => (a -> f b) -> c a -> f (c b) cmap f = commute . (f |$>) -- | The auguments-flipped function for @'cmap'@, equivalent for @'Data.Traversable.for'@. cfor :: (Applicative f, Commutative c) => c a -> (a -> f b) -> f (c b) cfor = flip cmap instance Commutative Maybe where commute (Just fa) = Just |$> fa commute Nothing = (*:) Nothing instance Commutative [] where commute = foldr (\x acc -> x <$|(:)|*> acc) ((*:) []) instance Commutative (Either a) where commute (Right x) = Right |$> x commute (Left x) = (*:) $ Left x {- instance Commutative ((->) r) where -- TODO: If GHC could parse this expression, maybe I could write up DeepControl.Monad. commute ((r->) mv) = (r->) |$> mv -} -- | This function may be used as a value for `fmap` in a `Functor` -- instance, provided that 'commute' is defined. (Using -- `fmapDefault` with a `Commutative` instance will result in infinite recursion.) fmapDefault :: Commutative t => (a -> b) -> t a -> t b fmapDefault f = getId . cmap (Id . f) -- | This function may be used as a value for `Data.Foldable.foldMap` -- in a `Foldable` instance. foldMapDefault :: (Commutative t, Monoid m) => (a -> m) -> t a -> m foldMapDefault f = getConst . cmap (Const . f) -- local instances newtype Id a = Id { getId :: a } instance Functor Id where fmap f (Id x) = Id (f x) instance Applicative Id where pure = Id Id f <*> Id x = Id (f x) ------------------------------------------------------------------------------ -- Level-2 sink2 :: (Commutative m1, Commutative m2, Applicative m3) => m1 (m2 (m3 a)) -> m2 (m3 (m1 a)) sink2 = (commute|$>) . commute float2 :: (Applicative m1, Commutative m2, Commutative m3) => m2 (m3 (m1 a)) -> m1 (m2 (m3 a)) float2 = commute . (commute|$>) ------------------------------------------------------------------------------ -- Level-3 sink3 :: (Commutative m1, Commutative m2, Commutative m3, Applicative m4) => m1 (m2 (m3 (m4 a))) -> m2 (m3 (m4 (m1 a))) sink3 = (sink2|$>) . commute float3 :: (Applicative m1, Commutative m2, Commutative m3, Commutative m4) => m2 (m3 (m4 (m1 a))) -> m1 (m2 (m3 (m4 a))) float3 = commute . (float2|$>) ------------------------------------------------------------------------------ -- Level-4 sink4 :: (Commutative m1, Commutative m2, Commutative m3, Commutative m4, Applicative m5) => m1 (m2 (m3 (m4 (m5 a)))) -> m2 (m3 (m4 (m5 (m1 a)))) sink4 = (sink3|$>) . commute float4 :: (Applicative m1, Commutative m2, Commutative m3, Commutative m4, Commutative m5) => m2 (m3 (m4 (m5 (m1 a)))) -> m1 (m2 (m3 (m4 (m5 a)))) float4 = commute . (float3|$>) ------------------------------------------------------------------------------ -- Level-5 sink5 :: (Commutative m1, Commutative m2, Commutative m3, Commutative m4, Commutative m5, Applicative m6) => m1 (m2 (m3 (m4 (m5 (m6 a))))) -> m2 (m3 (m4 (m5 (m6 (m1 a))))) sink5 = (sink4|$>) . commute float5 :: (Applicative m1, Commutative m2, Commutative m3, Commutative m4, Commutative m5, Commutative m6) => m2 (m3 (m4 (m5 (m6 (m1 a))))) -> m1 (m2 (m3 (m4 (m5 (m6 a))))) float5 = commute . (float4|$>)