{-# LANGUAGE GADTs, RankNTypes #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE CPP #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif module Data.Dependent.Map ( DMap , DSum(..), Key(..) , GCompare(..), GOrdering(..) -- * Operators , (!), (\\) -- * Query , null , size , member , notMember , lookup , findWithDefault -- * Construction , empty , singleton -- ** Insertion , insert , insertWith , insertWith' , insertWithKey , insertWithKey' , insertLookupWithKey , insertLookupWithKey' -- ** Delete\/Update , delete , adjust , adjustWithKey , update , updateWithKey , updateLookupWithKey , alter -- * Combine -- ** Union , union , unionWithKey , unions , unionsWithKey -- ** Difference , difference , differenceWithKey -- ** Intersection , intersection , intersectionWithKey -- * Traversal -- ** Map , mapWithKey , mapAccumLWithKey , mapAccumRWithKey , mapKeysWith , mapKeysMonotonic -- ** Fold , foldWithKey , foldrWithKey , foldlWithKey -- , foldlWithKey' -- * Conversion , keys , assocs -- ** Lists , toList , fromList , fromListWithKey -- ** Ordered lists , toAscList , toDescList , fromAscList , fromAscListWithKey , fromDistinctAscList -- * Filter , filter , filterWithKey , partitionWithKey , mapMaybeWithKey , mapEitherWithKey , split , splitLookup -- * Submap , isSubmapOf, isSubmapOfBy , isProperSubmapOf, isProperSubmapOfBy -- * Indexed , lookupIndex , findIndex , elemAt , updateAt , deleteAt -- * Min\/Max , findMin , findMax , deleteMin , deleteMax , deleteFindMin , deleteFindMax , updateMinWithKey , updateMaxWithKey , minViewWithKey , maxViewWithKey -- * Debugging , showTree , showTreeWith , valid ) where import Prelude hiding (null, lookup) import Data.Dependent.Map.Internal #if !MIN_VERSION_base(4,7,0) import Data.Dependent.Map.Typeable ({- instance Typeable ... -}) #endif import Data.Dependent.Sum import Data.GADT.Compare import Data.Maybe (isJust) import Data.Monoid import Text.Read instance (GCompare k) => Monoid (DMap k) where mempty = empty mappend = union mconcat = unions {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} infixl 9 !,\\ -- -- | /O(log n)/. Find the value at a key. -- Calls 'error' when the element can not be found. -- -- > fromList [(5,'a'), (3,'b')] ! 1 Error: element not in the map -- > fromList [(5,'a'), (3,'b')] ! 5 == 'a' (!) :: GCompare k => DMap k -> k v -> v (!) m k = find k m -- | Same as 'difference'. (\\) :: GCompare k => DMap k -> DMap k -> DMap k m1 \\ m2 = difference m1 m2 -- #if __GLASGOW_HASKELL__ -- -- {-------------------------------------------------------------------- -- A Data instance -- --------------------------------------------------------------------} -- -- -- This instance preserves data abstraction at the cost of inefficiency. -- -- We omit reflection services for the sake of data abstraction. -- -- instance (Data k, Data a, GCompare k) => Data (DMap k) where -- gfoldl f z m = z fromList `f` toList m -- toConstr _ = error "toConstr" -- gunfold _ _ = error "gunfold" -- dataTypeOf _ = mkNoRepType "Data.Map.Map" -- dataCast2 f = gcast2 f -- -- #endif {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(log n)/. Is the key a member of the map? See also 'notMember'. member :: GCompare k => k a -> DMap k -> Bool member k = isJust . lookup k -- | /O(log n)/. Is the key not a member of the map? See also 'member'. notMember :: GCompare k => k v -> DMap k -> Bool notMember k m = not (member k m) -- | /O(log n)/. Find the value at a key. -- Calls 'error' when the element can not be found. -- Consider using 'lookup' when elements may not be present. find :: GCompare k => k v -> DMap k -> v find k m = case lookup k m of Nothing -> error "DMap.find: element not in the map" Just v -> v -- | /O(log n)/. The expression @('findWithDefault' def k map)@ returns -- the value at key @k@ or returns default value @def@ -- when the key is not in the map. findWithDefault :: GCompare k => v -> k v -> DMap k -> v findWithDefault def k m = case lookup k m of Nothing -> def Just v -> v {-------------------------------------------------------------------- Insertion --------------------------------------------------------------------} -- | /O(log n)/. Insert a new key and value in the map. -- If the key is already present in the map, the associated value is -- replaced with the supplied value. 'insert' is equivalent to -- @'insertWith' 'const'@. insert :: forall k v. GCompare k => k v -> v -> DMap k -> DMap k insert kx x = kx `seq` go where go :: DMap k -> DMap k go Tip = singleton kx x go (Bin sz ky y l r) = case gcompare kx ky of GLT -> balance ky y (go l) r GGT -> balance ky y l (go r) GEQ -> Bin sz kx x l r -- | /O(log n)/. Insert with a function, combining new value and old value. -- @'insertWith' f key value mp@ -- will insert the entry @key :=> value@ into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the entry @key :=> f new_value old_value@. insertWith :: GCompare k => (v -> v -> v) -> k v -> v -> DMap k -> DMap k insertWith f = insertWithKey (\_ x' y' -> f x' y') -- | Same as 'insertWith', but the combining function is applied strictly. -- This is often the most desirable behavior. insertWith' :: GCompare k => (v -> v -> v) -> k v -> v -> DMap k -> DMap k insertWith' f = insertWithKey' (\_ x' y' -> f x' y') -- | /O(log n)/. Insert with a function, combining key, new value and old value. -- @'insertWithKey' f key value mp@ -- will insert the entry @key :=> value@ into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the entry @key :=> f key new_value old_value@. -- Note that the key passed to f is the same key passed to 'insertWithKey'. insertWithKey :: forall k v. GCompare k => (k v -> v -> v -> v) -> k v -> v -> DMap k -> DMap k insertWithKey f kx x = kx `seq` go where go :: DMap k -> DMap k go Tip = singleton kx x go (Bin sy ky y l r) = case gcompare kx ky of GLT -> balance ky y (go l) r GGT -> balance ky y l (go r) GEQ -> Bin sy kx (f kx x y) l r -- | Same as 'insertWithKey', but the combining function is applied strictly. insertWithKey' :: forall k v. GCompare k => (k v -> v -> v -> v) -> k v -> v -> DMap k -> DMap k insertWithKey' f kx x = kx `seq` go where go :: DMap k -> DMap k go Tip = singleton kx $! x go (Bin sy ky y l r) = case gcompare kx ky of GLT -> balance ky y (go l) r GGT -> balance ky y l (go r) GEQ -> let x' = f kx x y in seq x' (Bin sy kx x' l r) -- | /O(log n)/. Combines insert operation with old value retrieval. -- The expression (@'insertLookupWithKey' f k x map@) -- is a pair where the first element is equal to (@'lookup' k map@) -- and the second element equal to (@'insertWithKey' f k x map@). insertLookupWithKey :: forall k v. GCompare k => (k v -> v -> v -> v) -> k v -> v -> DMap k -> (Maybe v, DMap k) insertLookupWithKey f kx x = kx `seq` go where go :: DMap k -> (Maybe v, DMap k) go Tip = (Nothing, singleton kx x) go (Bin sy ky y l r) = case gcompare kx ky of GLT -> let (found, l') = go l in (found, balance ky y l' r) GGT -> let (found, r') = go r in (found, balance ky y l r') GEQ -> (Just y, Bin sy kx (f kx x y) l r) -- | /O(log n)/. A strict version of 'insertLookupWithKey'. insertLookupWithKey' :: forall k v. GCompare k => (k v -> v -> v -> v) -> k v -> v -> DMap k -> (Maybe v, DMap k) insertLookupWithKey' f kx x = kx `seq` go where go :: DMap k -> (Maybe v, DMap k) go Tip = x `seq` (Nothing, singleton kx x) go (Bin sy ky y l r) = case gcompare kx ky of GLT -> let (found, l') = go l in (found, balance ky y l' r) GGT -> let (found, r') = go r in (found, balance ky y l r') GEQ -> let x' = f kx x y in x' `seq` (Just y, Bin sy kx x' l r) {-------------------------------------------------------------------- Deletion [delete] is the inlined version of [deleteWith (\k x -> Nothing)] --------------------------------------------------------------------} -- | /O(log n)/. Delete a key and its value from the map. When the key is not -- a member of the map, the original map is returned. delete :: forall k v. GCompare k => k v -> DMap k -> DMap k delete k = k `seq` go where go :: DMap k -> DMap k go Tip = Tip go (Bin _ kx x l r) = case gcompare k kx of GLT -> balance kx x (go l) r GGT -> balance kx x l (go r) GEQ -> glue l r -- | /O(log n)/. Update a value at a specific key with the result of the provided function. -- When the key is not -- a member of the map, the original map is returned. adjust :: GCompare k => (v -> v) -> k v -> DMap k -> DMap k adjust f = adjustWithKey (\_ x -> f x) -- | /O(log n)/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. adjustWithKey :: GCompare k => (k v -> v -> v) -> k v -> DMap k -> DMap k adjustWithKey f = updateWithKey (\k' x' -> Just (f k' x')) -- | /O(log n)/. The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. update :: GCompare k => (v -> Maybe v) -> k v -> DMap k -> DMap k update f = updateWithKey (\_ x -> f x) -- | /O(log n)/. The expression (@'updateWithKey' f k map@) updates the -- value @x@ at @k@ (if it is in the map). If (@f k x@) is 'Nothing', -- the element is deleted. If it is (@'Just' y@), the key @k@ is bound -- to the new value @y@. updateWithKey :: forall k v. GCompare k => (k v -> v -> Maybe v) -> k v -> DMap k -> DMap k updateWithKey f k = k `seq` go where go :: DMap k -> DMap k go Tip = Tip go (Bin sx kx x l r) = case gcompare k kx of GLT -> balance kx x (go l) r GGT -> balance kx x l (go r) GEQ -> case f kx x of Just x' -> Bin sx kx x' l r Nothing -> glue l r -- | /O(log n)/. Lookup and update. See also 'updateWithKey'. -- The function returns changed value, if it is updated. -- Returns the original key value if the map entry is deleted. updateLookupWithKey :: forall k v. GCompare k => (k v -> v -> Maybe v) -> k v -> DMap k -> (Maybe v,DMap k) updateLookupWithKey f k = k `seq` go where go :: DMap k -> (Maybe v, DMap k) go Tip = (Nothing,Tip) go (Bin sx kx x l r) = case gcompare k kx of GLT -> let (found,l') = go l in (found,balance kx x l' r) GGT -> let (found,r') = go r in (found,balance kx x l r') GEQ -> case f kx x of Just x' -> (Just x',Bin sx kx x' l r) Nothing -> (Just x,glue l r) -- | /O(log n)/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alter' can be used to insert, delete, or update a value in a 'Map'. -- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@. alter :: forall k v. GCompare k => (Maybe v -> Maybe v) -> k v -> DMap k -> DMap k alter f k = k `seq` go where go :: DMap k -> DMap k go Tip = case f Nothing of Nothing -> Tip Just x -> singleton k x go (Bin sx kx x l r) = case gcompare k kx of GLT -> balance kx x (go l) r GGT -> balance kx x l (go r) GEQ -> case f (Just x) of Just x' -> Bin sx kx x' l r Nothing -> glue l r {-------------------------------------------------------------------- Indexing --------------------------------------------------------------------} -- | /O(log n)/. Return the /index/ of a key. The index is a number from -- /0/ up to, but not including, the 'size' of the map. Calls 'error' when -- the key is not a 'member' of the map. findIndex :: GCompare k => k v -> DMap k -> Int findIndex k t = case lookupIndex k t of Nothing -> error "Map.findIndex: element is not in the map" Just idx -> idx -- | /O(log n)/. Lookup the /index/ of a key. The index is a number from -- /0/ up to, but not including, the 'size' of the map. lookupIndex :: forall k v. GCompare k => k v -> DMap k -> Maybe Int lookupIndex k = k `seq` go 0 where go :: Int -> DMap k -> Maybe Int go !idx Tip = idx `seq` Nothing go !idx (Bin _ kx _ l r) = case gcompare k kx of GLT -> go idx l GGT -> go (idx + size l + 1) r GEQ -> Just (idx + size l) -- | /O(log n)/. Retrieve an element by /index/. Calls 'error' when an -- invalid index is used. elemAt :: Int -> DMap k -> DSum k elemAt _ Tip = error "Map.elemAt: index out of range" elemAt i (Bin _ kx x l r) = case compare i sizeL of LT -> elemAt i l GT -> elemAt (i-sizeL-1) r EQ -> kx :=> x where sizeL = size l -- | /O(log n)/. Update the element at /index/. Calls 'error' when an -- invalid index is used. updateAt :: (forall v. k v -> v -> Maybe v) -> Int -> DMap k -> DMap k updateAt f i0 t = i0 `seq` go i0 t where go _ Tip = error "Map.updateAt: index out of range" go i (Bin sx kx x l r) = case compare i sizeL of LT -> balance kx x (go i l) r GT -> balance kx x l (go (i-sizeL-1) r) EQ -> case f kx x of Just x' -> Bin sx kx x' l r Nothing -> glue l r where sizeL = size l -- | /O(log n)/. Delete the element at /index/. -- Defined as (@'deleteAt' i map = 'updateAt' (\k x -> 'Nothing') i map@). deleteAt :: Int -> DMap k -> DMap k deleteAt i m = updateAt (\_ _ -> Nothing) i m {-------------------------------------------------------------------- Minimal, Maximal --------------------------------------------------------------------} -- | /O(log n)/. The minimal key of the map. Calls 'error' is the map is empty. findMin :: DMap k -> DSum k findMin (Bin _ kx x Tip _) = kx :=> x findMin (Bin _ _ _ l _) = findMin l findMin Tip = error "Map.findMin: empty map has no minimal element" -- | /O(log n)/. The maximal key of the map. Calls 'error' is the map is empty. findMax :: DMap k -> DSum k findMax (Bin _ kx x _ Tip) = kx :=> x findMax (Bin _ _ _ _ r) = findMax r findMax Tip = error "Map.findMax: empty map has no maximal element" -- | /O(log n)/. Delete the minimal key. Returns an empty map if the map is empty. deleteMin :: DMap k -> DMap k deleteMin (Bin _ _ _ Tip r) = r deleteMin (Bin _ kx x l r) = balance kx x (deleteMin l) r deleteMin Tip = Tip -- | /O(log n)/. Delete the maximal key. Returns an empty map if the map is empty. deleteMax :: DMap k -> DMap k deleteMax (Bin _ _ _ l Tip) = l deleteMax (Bin _ kx x l r) = balance kx x l (deleteMax r) deleteMax Tip = Tip -- | /O(log n)/. Update the value at the minimal key. updateMinWithKey :: (forall v. k v -> v -> Maybe v) -> DMap k -> DMap k updateMinWithKey f = go where go (Bin sx kx x Tip r) = case f kx x of Nothing -> r Just x' -> Bin sx kx x' Tip r go (Bin _ kx x l r) = balance kx x (go l) r go Tip = Tip -- | /O(log n)/. Update the value at the maximal key. updateMaxWithKey :: (forall v. k v -> v -> Maybe v) -> DMap k -> DMap k updateMaxWithKey f = go where go (Bin sx kx x l Tip) = case f kx x of Nothing -> l Just x' -> Bin sx kx x' l Tip go (Bin _ kx x l r) = balance kx x l (go r) go Tip = Tip -- | /O(log n)/. Retrieves the minimal (key :=> value) entry of the map, and -- the map stripped of that element, or 'Nothing' if passed an empty map. minViewWithKey :: DMap k -> Maybe (DSum k, DMap k) minViewWithKey Tip = Nothing minViewWithKey x = Just (deleteFindMin x) -- | /O(log n)/. Retrieves the maximal (key :=> value) entry of the map, and -- the map stripped of that element, or 'Nothing' if passed an empty map. maxViewWithKey :: DMap k -> Maybe (DSum k, DMap k) maxViewWithKey Tip = Nothing maxViewWithKey x = Just (deleteFindMax x) {-------------------------------------------------------------------- Union. --------------------------------------------------------------------} -- | The union of a list of maps: -- (@'unions' == 'Prelude.foldl' 'union' 'empty'@). unions :: GCompare k => [DMap k] -> DMap k unions ts = foldlStrict union empty ts -- | The union of a list of maps, with a combining operation: -- (@'unionsWithKey' f == 'Prelude.foldl' ('unionWithKey' f) 'empty'@). unionsWithKey :: GCompare k => (forall v. k v -> v -> v -> v) -> [DMap k] -> DMap k unionsWithKey f ts = foldlStrict (unionWithKey f) empty ts -- | /O(n+m)/. -- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@. -- It prefers @t1@ when duplicate keys are encountered, -- i.e. (@'union' == 'unionWith' 'const'@). -- The implementation uses the efficient /hedge-union/ algorithm. -- Hedge-union is more efficient on (bigset \``union`\` smallset). union :: GCompare k => DMap k -> DMap k -> DMap k union Tip t2 = t2 union t1 Tip = t1 union t1 t2 = hedgeUnionL (const LT) (const GT) t1 t2 -- left-biased hedge union hedgeUnionL :: GCompare k => (Key k -> Ordering) -> (Key k -> Ordering) -> DMap k -> DMap k -> DMap k hedgeUnionL _ _ t1 Tip = t1 hedgeUnionL cmplo cmphi Tip (Bin _ kx x l r) = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeUnionL cmplo cmphi (Bin _ kx x l r) t2 = join kx x (hedgeUnionL cmplo cmpkx l (trim cmplo cmpkx t2)) (hedgeUnionL cmpkx cmphi r (trim cmpkx cmphi t2)) where cmpkx k = compare (Key kx) k {-------------------------------------------------------------------- Union with a combining function --------------------------------------------------------------------} -- | /O(n+m)/. -- Union with a combining function. The implementation uses the efficient /hedge-union/ algorithm. -- Hedge-union is more efficient on (bigset \``union`\` smallset). unionWithKey :: GCompare k => (forall v. k v -> v -> v -> v) -> DMap k -> DMap k -> DMap k unionWithKey _ Tip t2 = t2 unionWithKey _ t1 Tip = t1 unionWithKey f t1 t2 = hedgeUnionWithKey f (const LT) (const GT) t1 t2 hedgeUnionWithKey :: forall k. GCompare k => (forall v. k v -> v -> v -> v) -> (Key k -> Ordering) -> (Key k -> Ordering) -> DMap k -> DMap k -> DMap k hedgeUnionWithKey _ _ _ t1 Tip = t1 hedgeUnionWithKey _ cmplo cmphi Tip (Bin _ kx x l r) = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeUnionWithKey f cmplo cmphi (Bin _ (kx :: k tx) x l r) t2 = join kx newx (hedgeUnionWithKey f cmplo cmpkx l lt) (hedgeUnionWithKey f cmpkx cmphi r gt) where cmpkx k = compare (Key kx) k lt = trim cmplo cmpkx t2 (found,gt) = trimLookupLo (Key kx) cmphi t2 newx :: tx newx = case found of Nothing -> x Just (ky :=> y) -> case geq kx ky of Just Refl -> f kx x y Nothing -> error "DMap.union: inconsistent GEq instance" {-------------------------------------------------------------------- Difference --------------------------------------------------------------------} -- | /O(n+m)/. Difference of two maps. -- Return elements of the first map not existing in the second map. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. difference :: GCompare k => DMap k -> DMap k -> DMap k difference Tip _ = Tip difference t1 Tip = t1 difference t1 t2 = hedgeDiff (const LT) (const GT) t1 t2 hedgeDiff :: GCompare k => (Key k -> Ordering) -> (Key k -> Ordering) -> DMap k -> DMap k -> DMap k hedgeDiff _ _ Tip _ = Tip hedgeDiff cmplo cmphi (Bin _ kx x l r) Tip = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeDiff cmplo cmphi t (Bin _ kx _ l r) = merge (hedgeDiff cmplo cmpkx (trim cmplo cmpkx t) l) (hedgeDiff cmpkx cmphi (trim cmpkx cmphi t) r) where cmpkx k = compare (Key kx) k -- | /O(n+m)/. Difference with a combining function. When two equal keys are -- encountered, the combining function is applied to the key and both values. -- If it returns 'Nothing', the element is discarded (proper set difference). If -- it returns (@'Just' y@), the element is updated with a new value @y@. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. differenceWithKey :: GCompare k => (forall v. k v -> v -> v -> Maybe v) -> DMap k -> DMap k -> DMap k differenceWithKey _ Tip _ = Tip differenceWithKey _ t1 Tip = t1 differenceWithKey f t1 t2 = hedgeDiffWithKey f (const LT) (const GT) t1 t2 hedgeDiffWithKey :: GCompare k => (forall v. k v -> v -> v -> Maybe v) -> (Key k -> Ordering) -> (Key k -> Ordering) -> DMap k -> DMap k -> DMap k hedgeDiffWithKey _ _ _ Tip _ = Tip hedgeDiffWithKey _ cmplo cmphi (Bin _ kx x l r) Tip = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeDiffWithKey f cmplo cmphi t (Bin _ kx x l r) = case found of Nothing -> merge tl tr Just (ky :=> y) -> case geq kx ky of Nothing -> error "DMap.difference: inconsistent GEq instance" Just Refl -> case f ky y x of Nothing -> merge tl tr Just z -> join ky z tl tr where cmpkx k = compare (Key kx) k lt = trim cmplo cmpkx t (found,gt) = trimLookupLo (Key kx) cmphi t tl = hedgeDiffWithKey f cmplo cmpkx lt l tr = hedgeDiffWithKey f cmpkx cmphi gt r {-------------------------------------------------------------------- Intersection --------------------------------------------------------------------} -- | /O(n+m)/. Intersection of two maps. -- Return data in the first map for the keys existing in both maps. -- (@'intersection' m1 m2 == 'intersectionWith' 'const' m1 m2@). intersection :: GCompare k => DMap k -> DMap k -> DMap k intersection m1 m2 = intersectionWithKey (\_ x _ -> x) m1 m2 -- | /O(n+m)/. Intersection with a combining function. -- Intersection is more efficient on (bigset \``intersection`\` smallset). intersectionWithKey :: GCompare k => (forall v. k v -> v -> v -> v) -> DMap k -> DMap k -> DMap k intersectionWithKey _ Tip _ = Tip intersectionWithKey _ _ Tip = Tip intersectionWithKey f t1@(Bin s1 k1 x1 l1 r1) t2@(Bin s2 k2 x2 l2 r2) = if s1 >= s2 then let (lt,found,gt) = splitLookupWithKey k2 t1 tl = intersectionWithKey f lt l2 tr = intersectionWithKey f gt r2 in case found of Just (k,x) -> join k (f k x x2) tl tr Nothing -> merge tl tr else let (lt,found,gt) = splitLookup k1 t2 tl = intersectionWithKey f l1 lt tr = intersectionWithKey f r1 gt in case found of Just x -> join k1 (f k1 x1 x) tl tr Nothing -> merge tl tr {-------------------------------------------------------------------- Submap --------------------------------------------------------------------} -- | /O(n+m)/. -- This function is defined as (@'isSubmapOf' = 'isSubmapOfBy' 'eqTagged')@). -- isSubmapOf :: (GCompare k,EqTag k) => DMap k -> DMap k -> Bool isSubmapOf m1 m2 = isSubmapOfBy eqTagged m1 m2 {- | /O(n+m)/. The expression (@'isSubmapOfBy' f t1 t2@) returns 'True' if all keys in @t1@ are in tree @t2@, and when @f@ returns 'True' when applied to their respective keys and values. -} isSubmapOfBy :: GCompare k => (forall v. k v -> k v -> v -> v -> Bool) -> DMap k -> DMap k -> Bool isSubmapOfBy f t1 t2 = (size t1 <= size t2) && (submap' f t1 t2) submap' :: GCompare k => (forall v. k v -> k v -> v -> v -> Bool) -> DMap k -> DMap k -> Bool submap' _ Tip _ = True submap' _ _ Tip = False submap' f (Bin _ kx x l r) t = case found of Nothing -> False Just (ky, y) -> f kx ky x y && submap' f l lt && submap' f r gt where (lt,found,gt) = splitLookupWithKey kx t -- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal). -- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' 'eqTagged'@). isProperSubmapOf :: (GCompare k, EqTag k) => DMap k -> DMap k -> Bool isProperSubmapOf m1 m2 = isProperSubmapOfBy eqTagged m1 m2 {- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal). The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when @m1@ and @m2@ are not equal, all keys in @m1@ are in @m2@, and when @f@ returns 'True' when applied to their respective keys and values. -} isProperSubmapOfBy :: GCompare k => (forall v. k v -> k v -> v -> v -> Bool) -> DMap k -> DMap k -> Bool isProperSubmapOfBy f t1 t2 = (size t1 < size t2) && (submap' f t1 t2) {-------------------------------------------------------------------- Filter and partition --------------------------------------------------------------------} -- | /O(n)/. Filter all keys\/values that satisfy the predicate. filterWithKey :: GCompare k => (forall v. k v -> v -> Bool) -> DMap k -> DMap k filterWithKey p = go where go Tip = Tip go (Bin _ kx x l r) | p kx x = join kx x (go l) (go r) | otherwise = merge (go l) (go r) -- | /O(n)/. Partition the map according to a predicate. The first -- map contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. partitionWithKey :: GCompare k => (forall v. k v -> v -> Bool) -> DMap k -> (DMap k,DMap k) partitionWithKey _ Tip = (Tip,Tip) partitionWithKey p (Bin _ kx x l r) | p kx x = (join kx x l1 r1,merge l2 r2) | otherwise = (merge l1 r1,join kx x l2 r2) where (l1,l2) = partitionWithKey p l (r1,r2) = partitionWithKey p r -- | /O(n)/. Map keys\/values and collect the 'Just' results. mapMaybeWithKey :: GCompare k => (forall v. k v -> v -> Maybe v) -> DMap k -> DMap k mapMaybeWithKey f = go where go Tip = Tip go (Bin _ kx x l r) = case f kx x of Just y -> join kx y (go l) (go r) Nothing -> merge (go l) (go r) -- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results. mapEitherWithKey :: GCompare k => (forall v. k v -> v -> Either v v) -> DMap k -> (DMap k, DMap k) mapEitherWithKey _ Tip = (Tip, Tip) mapEitherWithKey f (Bin _ kx x l r) = case f kx x of Left y -> (join kx y l1 r1, merge l2 r2) Right z -> (merge l1 r1, join kx z l2 r2) where (l1,l2) = mapEitherWithKey f l (r1,r2) = mapEitherWithKey f r {-------------------------------------------------------------------- Mapping --------------------------------------------------------------------} -- | /O(n)/. Map a function over all values in the map. mapWithKey :: (forall v. k v -> v -> v) -> DMap k -> DMap k mapWithKey f = go where go Tip = Tip go (Bin sx kx x l r) = Bin sx kx (f kx x) (go l) (go r) -- | /O(n)/. The function 'mapAccumLWithKey' threads an accumulating -- argument throught the map in ascending order of keys. mapAccumLWithKey :: (forall v. a -> k v -> v -> (a,v)) -> a -> DMap k -> (a,DMap k) mapAccumLWithKey f = go where go a Tip = (a,Tip) go a (Bin sx kx x l r) = let (a1,l') = go a l (a2,x') = f a1 kx x (a3,r') = go a2 r in (a3,Bin sx kx x' l' r') -- | /O(n)/. The function 'mapAccumRWithKey' threads an accumulating -- argument through the map in descending order of keys. mapAccumRWithKey :: (forall v. a -> k v -> v -> (a,v)) -> a -> DMap k -> (a, DMap k) mapAccumRWithKey f = go where go a Tip = (a,Tip) go a (Bin sx kx x l r) = let (a1,r') = go a r (a2,x') = f a1 kx x (a3,l') = go a2 l in (a3,Bin sx kx x' l' r') -- | /O(n*log n)/. -- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the associated values will be -- combined using @c@. mapKeysWith :: GCompare k2 => (forall v. k2 v -> v -> v -> v) -> (forall v. k1 v -> k2 v) -> DMap k1 -> DMap k2 mapKeysWith c f = fromListWithKey c . map fFirst . toList where fFirst (x :=> y) = (f x :=> y) -- | /O(n)/. -- @'mapKeysMonotonic' f s == 'mapKeys' f s@, but works only when @f@ -- is strictly monotonic. -- That is, for any values @x@ and @y@, if @x@ < @y@ then @f x@ < @f y@. -- /The precondition is not checked./ -- Semi-formally, we have: -- -- > and [x < y ==> f x < f y | x <- ls, y <- ls] -- > ==> mapKeysMonotonic f s == mapKeys f s -- > where ls = keys s -- -- This means that @f@ maps distinct original keys to distinct resulting keys. -- This function has better performance than 'mapKeys'. mapKeysMonotonic :: (forall v. k1 v -> k2 v) -> DMap k1 -> DMap k2 mapKeysMonotonic _ Tip = Tip mapKeysMonotonic f (Bin sz k x l r) = Bin sz (f k) x (mapKeysMonotonic f l) (mapKeysMonotonic f r) {-------------------------------------------------------------------- Folds --------------------------------------------------------------------} -- | /O(n)/. Fold the keys and values in the map, such that -- @'foldWithKey' f z == 'Prelude.foldr' ('uncurry' f) z . 'toAscList'@. -- -- This is identical to 'foldrWithKey', and you should use that one instead of -- this one. This name is kept for backward compatibility. foldWithKey :: (forall v. k v -> v -> b -> b) -> b -> DMap k -> b foldWithKey = foldrWithKey {-# DEPRECATED foldWithKey "Use foldrWithKey instead" #-} -- | /O(n)/. Post-order fold. The function will be applied from the lowest -- value to the highest. foldrWithKey :: (forall v. k v -> v -> b -> b) -> b -> DMap k -> b foldrWithKey f = go where go z Tip = z go z (Bin _ kx x l r) = go (f kx x (go z r)) l -- | /O(n)/. Pre-order fold. The function will be applied from the highest -- value to the lowest. foldlWithKey :: (forall v. b -> k v -> v -> b) -> b -> DMap k -> b foldlWithKey f = go where go z Tip = z go z (Bin _ kx x l r) = go (f (go z l) kx x) r {- -- | /O(n)/. A strict version of 'foldlWithKey'. foldlWithKey' :: (b -> k -> a -> b) -> b -> DMap k -> b foldlWithKey' f = go where go z Tip = z go z (Bin _ kx x l r) = z `seq` go (f (go z l) kx x) r -} {-------------------------------------------------------------------- List variations --------------------------------------------------------------------} -- | /O(n)/. Return all keys of the map in ascending order. -- -- > keys (fromList [(5,"a"), (3,"b")]) == [3,5] -- > keys empty == [] keys :: DMap k -> [Key k] keys m = [Key k | (k :=> _) <- assocs m] -- | /O(n)/. Return all key\/value pairs in the map in ascending key order. assocs :: DMap k -> [DSum k] assocs m = toList m {-------------------------------------------------------------------- Lists use [foldlStrict] to reduce demand on the control-stack --------------------------------------------------------------------} -- | /O(n*log n)/. Build a map from a list of key\/value pairs. See also 'fromAscList'. -- If the list contains more than one value for the same key, the last value -- for the key is retained. fromList :: GCompare k => [DSum k] -> DMap k fromList xs = foldlStrict ins empty xs where ins :: GCompare k => DMap k -> DSum k -> DMap k ins t (k :=> x) = insert k x t -- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWithKey'. fromListWithKey :: GCompare k => (forall v. k v -> v -> v -> v) -> [DSum k] -> DMap k fromListWithKey f xs = foldlStrict (ins f) empty xs where ins :: GCompare k => (forall v. k v -> v -> v -> v) -> DMap k -> DSum k -> DMap k ins f t (k :=> x) = insertWithKey f k x t -- | /O(n)/. Convert to a list of key\/value pairs. toList :: DMap k -> [DSum k] toList t = toAscList t -- | /O(n)/. Convert to an ascending list. toAscList :: DMap k -> [DSum k] toAscList t = foldrWithKey (\k x xs -> (k :=> x):xs) [] t -- | /O(n)/. Convert to a descending list. toDescList :: DMap k -> [DSum k] toDescList t = foldlWithKey (\xs k x -> (k :=> x):xs) [] t {-------------------------------------------------------------------- Building trees from ascending/descending lists can be done in linear time. Note that if [xs] is ascending that: fromAscList xs == fromList xs fromAscListWith f xs == fromListWith f xs --------------------------------------------------------------------} -- | /O(n)/. Build a map from an ascending list in linear time. -- /The precondition (input list is ascending) is not checked./ fromAscList :: GEq k => [DSum k] -> DMap k fromAscList xs = fromAscListWithKey (\_ x _ -> x) xs -- | /O(n)/. Build a map from an ascending list in linear time with a -- combining function for equal keys. -- /The precondition (input list is ascending) is not checked./ fromAscListWithKey :: GEq k => (forall v. k v -> v -> v -> v) -> [DSum k] -> DMap k fromAscListWithKey f xs = fromDistinctAscList (combineEq f xs) where -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs] combineEq _ xs' = case xs' of [] -> [] [x] -> [x] (x:xx) -> combineEq' f x xx combineEq' :: GEq k => (forall v. k v -> v -> v -> v) -> DSum k -> [DSum k] -> [DSum k] combineEq' f z [] = [z] combineEq' f z@(kz :=> zz) (x@(kx :=> xx):xs') = case geq kx kz of Just Refl -> let yy = f kx xx zz in combineEq' f (kx :=> yy) xs' Nothing -> z : combineEq' f x xs' -- | /O(n)/. Build a map from an ascending list of distinct elements in linear time. -- /The precondition is not checked./ fromDistinctAscList :: [DSum k] -> DMap k fromDistinctAscList xs = build const (length xs) xs where -- 1) use continutations so that we use heap space instead of stack space. -- 2) special case for n==5 to build bushier trees. build :: (DMap k -> [DSum k] -> b) -> Int -> [DSum k] -> b build c 0 xs' = c Tip xs' build c 5 xs' = case xs' of ((k1:=>x1):(k2:=>x2):(k3:=>x3):(k4:=>x4):(k5:=>x5):xx) -> c (bin k4 x4 (bin k2 x2 (singleton k1 x1) (singleton k3 x3)) (singleton k5 x5)) xx _ -> error "fromDistinctAscList build" build c n xs' = seq nr $ build (buildR nr c) nl xs' where nl = n `div` 2 nr = n - nl - 1 buildR :: Int -> (DMap k -> [DSum k] -> b) -> DMap k -> [DSum k] -> b buildR n c l ((k:=>x):ys) = build (buildB l k x c) n ys buildR _ _ _ [] = error "fromDistinctAscList buildR []" buildB :: DMap k -> k v -> v -> (DMap k -> a -> b) -> DMap k -> a -> b buildB l k x c r zs = c (bin k x l r) zs {-------------------------------------------------------------------- Split --------------------------------------------------------------------} -- | /O(log n)/. The expression (@'split' k map@) is a pair @(map1,map2)@ where -- the keys in @map1@ are smaller than @k@ and the keys in @map2@ larger than @k@. -- Any key equal to @k@ is found in neither @map1@ nor @map2@. split :: forall k v. GCompare k => k v -> DMap k -> (DMap k,DMap k) split k = go where go :: DMap k -> (DMap k,DMap k) go Tip = (Tip, Tip) go (Bin _ kx x l r) = case gcompare k kx of GLT -> let (lt,gt) = go l in (lt,join kx x gt r) GGT -> let (lt,gt) = go r in (join kx x l lt,gt) GEQ -> (l,r) -- | /O(log n)/. The expression (@'splitLookup' k map@) splits a map just -- like 'split' but also returns @'lookup' k map@. splitLookup :: forall k v. GCompare k => k v -> DMap k -> (DMap k,Maybe v,DMap k) splitLookup k = go where go :: DMap k -> (DMap k,Maybe v,DMap k) go Tip = (Tip,Nothing,Tip) go (Bin _ kx x l r) = case gcompare k kx of GLT -> let (lt,z,gt) = go l in (lt,z,join kx x gt r) GGT -> let (lt,z,gt) = go r in (join kx x l lt,z,gt) GEQ -> (l,Just x,r) -- | /O(log n)/. splitLookupWithKey :: forall k v. GCompare k => k v -> DMap k -> (DMap k,Maybe (k v, v),DMap k) splitLookupWithKey k = go where go :: DMap k -> (DMap k,Maybe (k v, v),DMap k) go Tip = (Tip,Nothing,Tip) go (Bin _ kx x l r) = case gcompare k kx of GLT -> let (lt,z,gt) = go l in (lt,z,join kx x gt r) GGT -> let (lt,z,gt) = go r in (join kx x l lt,z,gt) GEQ -> (l,Just (kx, x),r) {-------------------------------------------------------------------- Eq converts the tree to a list. In a lazy setting, this actually seems one of the faster methods to compare two trees and it is certainly the simplest :-) --------------------------------------------------------------------} instance EqTag k => Eq (DMap k) where t1 == t2 = (size t1 == size t2) && (toAscList t1 == toAscList t2) {-------------------------------------------------------------------- Ord --------------------------------------------------------------------} instance OrdTag k => Ord (DMap k) where compare m1 m2 = compare (toAscList m1) (toAscList m2) {-------------------------------------------------------------------- Read --------------------------------------------------------------------} instance (GCompare f, ReadTag f) => Read (DMap f) where readPrec = parens $ prec 10 $ do Ident "fromList" <- lexP xs <- readPrec return (fromList xs) readListPrec = readListPrecDefault {-------------------------------------------------------------------- Show --------------------------------------------------------------------} instance ShowTag k => Show (DMap k) where showsPrec p m = showParen (p>10) ( showString "fromList " . showsPrec 11 (toList m) ) -- | /O(n)/. Show the tree that implements the map. The tree is shown -- in a compressed, hanging format. See 'showTreeWith'. showTree :: ShowTag k => DMap k -> String showTree m = showTreeWith showElem True False m where showElem :: ShowTag k => k v -> v -> String showElem k x = show (k :=> x) {- | /O(n)/. The expression (@'showTreeWith' showelem hang wide map@) shows the tree that implements the map. Elements are shown using the @showElem@ function. If @hang@ is 'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If @wide@ is 'True', an extra wide version is shown. -} showTreeWith :: (forall v. k v -> v -> String) -> Bool -> Bool -> DMap k -> String showTreeWith showelem hang wide t | hang = (showsTreeHang showelem wide [] t) "" | otherwise = (showsTree showelem wide [] [] t) "" showsTree :: (forall v. k v -> v -> String) -> Bool -> [String] -> [String] -> DMap k -> ShowS showsTree showelem wide lbars rbars t = case t of Tip -> showsBars lbars . showString "|\n" Bin _ kx x Tip Tip -> showsBars lbars . showString (showelem kx x) . showString "\n" Bin _ kx x l r -> showsTree showelem wide (withBar rbars) (withEmpty rbars) r . showWide wide rbars . showsBars lbars . showString (showelem kx x) . showString "\n" . showWide wide lbars . showsTree showelem wide (withEmpty lbars) (withBar lbars) l showsTreeHang :: (forall v. k v -> v -> String) -> Bool -> [String] -> DMap k -> ShowS showsTreeHang showelem wide bars t = case t of Tip -> showsBars bars . showString "|\n" Bin _ kx x Tip Tip -> showsBars bars . showString (showelem kx x) . showString "\n" Bin _ kx x l r -> showsBars bars . showString (showelem kx x) . showString "\n" . showWide wide bars . showsTreeHang showelem wide (withBar bars) l . showWide wide bars . showsTreeHang showelem wide (withEmpty bars) r showWide :: Bool -> [String] -> String -> String showWide wide bars | wide = showString (concat (reverse bars)) . showString "|\n" | otherwise = id showsBars :: [String] -> ShowS showsBars bars = case bars of [] -> id _ -> showString (concat (reverse (tail bars))) . showString node node :: String node = "+--" withBar, withEmpty :: [String] -> [String] withBar bars = "| ":bars withEmpty bars = " ":bars {-------------------------------------------------------------------- Assertions --------------------------------------------------------------------} -- | /O(n)/. Test if the internal map structure is valid. valid :: GCompare k => DMap k -> Bool valid t = balanced t && ordered t && validsize t ordered :: GCompare k => DMap k -> Bool ordered t = bounded (const True) (const True) t where bounded :: GCompare k => (Key k -> Bool) -> (Key k -> Bool) -> DMap k -> Bool bounded lo hi t' = case t' of Tip -> True Bin _ kx _ l r -> (lo (Key kx)) && (hi (Key kx)) && bounded lo (< Key kx) l && bounded (> Key kx) hi r -- | Exported only for "Debug.QuickCheck" balanced :: DMap k -> Bool balanced t = case t of Tip -> True Bin _ _ _ l r -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) && balanced l && balanced r validsize :: DMap k -> Bool validsize t = (realsize t == Just (size t)) where realsize t' = case t' of Tip -> Just 0 Bin sz _ _ l r -> case (realsize l,realsize r) of (Just n,Just m) | n+m+1 == sz -> Just sz _ -> Nothing {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} foldlStrict :: (a -> b -> a) -> a -> [b] -> a foldlStrict f = go where go z [] = z go z (x:xs) = z `seq` go (f z x) xs