{-# LANGUAGE TypeOperators , FlexibleContexts , FlexibleInstances , UndecidableInstances , TypeFamilies , MultiParamTypeClasses , GeneralizedNewtypeDeriving , TemplateHaskell , TypeFamilies , TypeSynonymInstances , ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.Core.Transform -- Copyright : (c) 2011 diagrams-core team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- "Diagrams" defines the core library of primitives -- forming the basis of an embedded domain-specific language for -- describing and rendering diagrams. -- -- The @Transform@ module defines generic transformations -- parameterized by any vector space. -- ----------------------------------------------------------------------------- module Diagrams.Core.Transform ( -- * Transformations -- ** Invertible linear transformations (:-:)(..), (<->), linv, lapp -- ** General transformations , Transformation(..) , inv, transp, transl , dropTransl , apply , papply , fromLinear , basis , dimension , onBasis , listRep , matrixRep , matrixHomRep , determinant , avgScale -- * The Transformable class , HasLinearMap , Transformable(..) -- * Translational invariance , TransInv(TransInv) -- * Vector space independent transformations -- | Most transformations are specific to a particular vector -- space, but a few can be defined generically over any -- vector space. , translation, translate , scaling, scale ) where import Control.Lens (Wrapped(..), Rewrapped, iso) import qualified Data.Map as M import Data.Semigroup import qualified Data.Set as S import Data.AdditiveGroup import Data.AffineSpace ((.-.)) import Data.Basis import Data.LinearMap import Data.MemoTrie import Data.Monoid.Action import Data.Monoid.Deletable import Data.VectorSpace import Diagrams.Core.HasOrigin import Diagrams.Core.Points import Diagrams.Core.V ------------------------------------------------------------ -- Transformations --------------------------------------- ------------------------------------------------------------ ------------------------------------------------------- -- Invertible linear transformations ---------------- ------------------------------------------------------- -- | @(v1 :-: v2)@ is a linear map paired with its inverse. data (:-:) u v = (u :-* v) :-: (v :-* u) infixr 7 :-: -- | Create an invertible linear map from two functions which are -- assumed to be linear inverses. (<->) :: (HasLinearMap u, HasLinearMap v) => (u -> v) -> (v -> u) -> (u :-: v) f <-> g = linear f :-: linear g instance HasLinearMap v => Semigroup (v :-: v) where (f :-: f') <> (g :-: g') = f *.* g :-: g' *.* f' -- | Invertible linear maps from a vector space to itself form a -- monoid under composition. instance HasLinearMap v => Monoid (v :-: v) where mempty = idL :-: idL mappend = (<>) -- | Invert a linear map. linv :: (u :-: v) -> (v :-: u) linv (f :-: g) = g :-: f -- | Apply a linear map to a vector. lapp :: (VectorSpace v, Scalar u ~ Scalar v, HasLinearMap u) => (u :-: v) -> u -> v lapp (f :-: _) = lapply f -------------------------------------------------- -- Affine transformations ---------------------- -------------------------------------------------- -- | General (affine) transformations, represented by an invertible -- linear map, its /transpose/, and a vector representing a -- translation component. -- -- By the /transpose/ of a linear map we mean simply the linear map -- corresponding to the transpose of the map's matrix -- representation. For example, any scale is its own transpose, -- since scales are represented by matrices with zeros everywhere -- except the diagonal. The transpose of a rotation is the same as -- its inverse. -- -- The reason we need to keep track of transposes is because it -- turns out that when transforming a shape according to some linear -- map L, the shape's /normal vectors/ transform according to L's -- inverse transpose. This is exactly what we need when -- transforming bounding functions, which are defined in terms of -- /perpendicular/ (i.e. normal) hyperplanes. -- -- For more general, non-invertable transformations, see -- @Diagrams.Deform@ (in @diagrams-lib@). data Transformation v = Transformation (v :-: v) (v :-: v) v type instance V (Transformation v) = v -- | Invert a transformation. inv :: HasLinearMap v => Transformation v -> Transformation v inv (Transformation t t' v) = Transformation (linv t) (linv t') (negateV (lapp (linv t) v)) -- | Get the transpose of a transformation (ignoring the translation -- component). transp :: Transformation v -> (v :-: v) transp (Transformation _ t' _) = t' -- | Get the translational component of a transformation. transl :: Transformation v -> v transl (Transformation _ _ v) = v -- | Drop the translational component of a transformation, leaving only -- the linear part. dropTransl :: AdditiveGroup v => Transformation v -> Transformation v dropTransl (Transformation a a' _) = Transformation a a' zeroV -- | Transformations are closed under composition; @t1 <> t2@ is the -- transformation which performs first @t2@, then @t1@. instance HasLinearMap v => Semigroup (Transformation v) where Transformation t1 t1' v1 <> Transformation t2 t2' v2 = Transformation (t1 <> t2) (t2' <> t1') (v1 ^+^ lapp t1 v2) instance HasLinearMap v => Monoid (Transformation v) where mempty = Transformation mempty mempty zeroV mappend = (<>) -- | Transformations can act on transformable things. instance (HasLinearMap v, v ~ (V a), Transformable a) => Action (Transformation v) a where act = transform -- | Apply a transformation to a vector. Note that any translational -- component of the transformation will not affect the vector, since -- vectors are invariant under translation. apply :: HasLinearMap v => Transformation v -> v -> v apply (Transformation t _ _) = lapp t -- | Apply a transformation to a point. papply :: HasLinearMap v => Transformation v -> Point v -> Point v papply (Transformation t _ v) (P p) = P $ lapp t p ^+^ v -- | Create a general affine transformation from an invertible linear -- transformation and its transpose. The translational component is -- assumed to be zero. fromLinear :: AdditiveGroup v => (v :-: v) -> (v :-: v) -> Transformation v fromLinear l1 l2 = Transformation l1 l2 zeroV -- | Get the matrix equivalent of the basis of the vector space v as -- a list of columns. basis :: forall v. HasLinearMap v => [v] basis = map basisValue b where b = map fst (decompose (zeroV :: v)) -- | Get the dimension of an object whose vector space is an instance of -- @HasLinearMap@, e.g. transformations, paths, diagrams, etc. dimension :: forall a. HasLinearMap (V a) => a -> Int dimension _ = length (decompose (zeroV :: V a)) -- | Get the matrix equivalent of the linear transform, -- (as a list of columns) and the translation vector. This -- is mostly useful for implementing backends. onBasis :: forall v. HasLinearMap v => Transformation v -> ([v], v) onBasis t = (vmat, tr) where tr = transl t vmat = map (apply t) basis -- Remove the nth element from a list remove :: Int -> [a] -> [a] remove n xs = ys ++ (tail zs) where (ys, zs) = splitAt n xs -- Minor matrix of cofactore C(i,j) minor :: Int -> Int -> [[a]] -> [[a]] minor i j xs = remove j $ map (remove i) xs -- The determinant of a square matrix represented as a list of lists -- representing column vectors, that is [column]. det :: Num a => [[a]] -> a det (a:[]) = head a det m = sum [(-1)^i * (c1 !! i) * det (minor i 0 m) | i <- [0 .. (n-1)]] where c1 = head m n = length m -- | Convert a vector v to a list of scalars. listRep :: HasLinearMap v => v -> [Scalar v] listRep v = map snd (decompose v) -- | Convert a `Transformation v` to a matrix representation as a list of -- column vectors which are also lists. matrixRep :: HasLinearMap v => Transformation v -> [[Scalar v]] matrixRep t = map listRep (fst . onBasis $ t) -- | Convert a `Transformation v` to a homogeneous matrix representation. -- The final list is the translation. -- The representation leaves off the last row of the matrix as it is -- always [0,0, ... 1] and this representation is the defacto standard -- for backends. matrixHomRep :: HasLinearMap v => Transformation v -> [[Scalar v]] matrixHomRep t = mr ++ [listRep tl] where mr = matrixRep t tl = transl t -- | The determinant of a `Transformation`. determinant :: (HasLinearMap v, Num (Scalar v)) => Transformation v -> Scalar v determinant t = det . matrixRep $ t -- | Compute the \"average\" amount of scaling performed by a -- transformation. Satisfies the properties -- -- @ -- avgScale (scaling k) == k -- avgScale (t1 <> t2) == avgScale t1 * avgScale t2 -- @ -- avgScale :: (HasLinearMap v, Floating (Scalar v)) => Transformation v -> Scalar v avgScale t = (abs . determinant $ t) ** (1 / fromIntegral (dimension t)) {- avgScale is computed as the nth root of the positive determinant. This works because the determinant is the factor by which a transformation scales area/volume. See http://en.wikipedia.org/wiki/Determinant. Proofs for the specified properties: 1. |det (scaling k)|^(1/n) = (k^n)^(1/n) = k 2. |det t1|^(1/n) * |det t2|^(1/n) = (|det t1| * |det t2|)^(1/n) = |det t1 * det t2|^(1/n) = |det (t1 <> t2)|^(1/n) -} ------------------------------------------------------------ -- The Transformable class ------------------------------- ------------------------------------------------------------ -- | 'HasLinearMap' is a poor man's class constraint synonym, just to -- help shorten some of the ridiculously long constraint sets. class (HasBasis v, HasTrie (Basis v), VectorSpace v) => HasLinearMap v instance (HasBasis v, HasTrie (Basis v), VectorSpace v) => HasLinearMap v -- | Type class for things @t@ which can be transformed. class HasLinearMap (V t) => Transformable t where -- | Apply a transformation to an object. transform :: Transformation (V t) -> t -> t instance HasLinearMap v => Transformable (Transformation v) where transform t1 t2 = t1 <> t2 instance HasLinearMap v => HasOrigin (Transformation v) where moveOriginTo p = translate (origin .-. p) instance (Transformable a, Transformable b, V a ~ V b) => Transformable (a,b) where transform t (x,y) = ( transform t x , transform t y ) instance (Transformable a, Transformable b, Transformable c, V a ~ V b, V a ~ V c) => Transformable (a,b,c) where transform t (x,y,z) = ( transform t x , transform t y , transform t z ) -- Transform functions by conjugation. That is, reverse-transform argument and -- forward-transform result. Intuition: If someone shrinks you, you see your -- environment enlarged. If you rotate right, you see your environment -- rotating left. Etc. This technique was used extensively in Pan for modular -- construction of image filters. Works well for curried functions, since all -- arguments get inversely transformed. instance ( HasBasis (V b), HasTrie (Basis (V b)) , Transformable a, Transformable b, V b ~ V a) => Transformable (a -> b) where transform tr f = transform tr . f . transform (inv tr) instance Transformable t => Transformable [t] where transform = map . transform instance (Transformable t, Ord t) => Transformable (S.Set t) where transform = S.map . transform instance Transformable t => Transformable (M.Map k t) where transform = M.map . transform instance HasLinearMap v => Transformable (Point v) where transform = papply instance Transformable m => Transformable (Deletable m) where transform = fmap . transform instance Transformable Double where transform = apply instance Transformable Rational where transform = apply ------------------------------------------------------------ -- Translational invariance ------------------------------ ------------------------------------------------------------ -- | @TransInv@ is a wrapper which makes a transformable type -- translationally invariant; the translational component of -- transformations will no longer affect things wrapped in -- @TransInv@. newtype TransInv t = TransInv t deriving (Eq, Ord, Show, Semigroup, Monoid) instance Wrapped (TransInv t) where type Unwrapped (TransInv t) = t _Wrapped' = iso (\(TransInv t) -> t) TransInv instance Rewrapped (TransInv t) (TransInv t') type instance V (TransInv t) = V t instance VectorSpace (V t) => HasOrigin (TransInv t) where moveOriginTo = const id instance Transformable t => Transformable (TransInv t) where transform (Transformation a a' _) (TransInv t) = TransInv (transform (Transformation a a' zeroV) t) ------------------------------------------------------------ -- Generic transformations ------------------------------- ------------------------------------------------------------ -- | Create a translation. translation :: HasLinearMap v => v -> Transformation v translation = Transformation mempty mempty -- | Translate by a vector. translate :: (Transformable t, HasLinearMap (V t)) => V t -> t -> t translate = transform . translation -- | Create a uniform scaling transformation. scaling :: (HasLinearMap v, Fractional (Scalar v)) => Scalar v -> Transformation v scaling s = fromLinear lin lin -- scaling is its own transpose where lin = (s *^) <-> (^/ s) -- | Scale uniformly in every dimension by the given scalar. scale :: (Transformable t, Fractional (Scalar (V t)), Eq (Scalar (V t))) => Scalar (V t) -> t -> t scale 0 = error "scale by zero! Halp!" -- XXX what should be done here? scale s = transform $ scaling s