{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.Core.Transform -- Copyright : (c) 2011-2015 diagrams-core team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- "Diagrams" defines the core library of primitives -- forming the basis of an embedded domain-specific language for -- describing and rendering diagrams. -- -- The @Transform@ module defines generic transformations -- parameterized by any vector space. -- ----------------------------------------------------------------------------- module Diagrams.Core.Transform ( -- * Transformations -- ** Invertible linear transformations (:-:)(..), (<->), linv, lapp -- ** General transformations , Transformation(..) , inv, transp, transl , dropTransl , apply , papply , fromLinear , fromOrthogonal , fromSymmetric , basis , dimension , onBasis , listRep , matrixRep , matrixHomRep , determinant , isReflection , avgScale , eye -- * The Transformable class , HasLinearMap , HasBasis , Transformable(..) -- * Translational invariance , TransInv(TransInv) -- * Vector space independent transformations -- | Most transformations are specific to a particular vector -- space, but a few can be defined generically over any -- vector space. , translation, translate , scaling, scale ) where import Control.Lens (Rewrapped, Traversable, Wrapped (..), iso, (&), (.~)) import qualified Data.Map as M import Data.Semigroup import qualified Data.Set as S import Data.Monoid.Action import Data.Monoid.Deletable import Linear.Affine import Linear.Vector import Data.Foldable (Foldable, toList) import Data.Functor.Rep import Diagrams.Core.HasOrigin import Diagrams.Core.Points () import Diagrams.Core.V ------------------------------------------------------------ -- Transformations --------------------------------------- ------------------------------------------------------------ ------------------------------------------------------- -- Invertible linear transformations ---------------- ------------------------------------------------------- -- | @(v1 :-: v2)@ is a linear map paired with its inverse. data (:-:) u v = (u -> v) :-: (v -> u) infixr 7 :-: -- | Create an invertible linear map from two functions which are -- assumed to be linear inverses. (<->) :: (u -> v) -> (v -> u) -> (u :-: v) f <-> g = f :-: g instance Semigroup (a :-: a) where (f :-: f') <> (g :-: g') = f . g :-: g' . f' -- | Invertible linear maps from a vector space to itself form a -- monoid under composition. instance Monoid (v :-: v) where mempty = id :-: id mappend = (<>) -- | Invert a linear map. linv :: (u :-: v) -> (v :-: u) linv (f :-: g) = g :-: f -- | Apply a linear map to a vector. lapp :: (u :-: v) -> u -> v lapp (f :-: _) = f -------------------------------------------------- -- Affine transformations ---------------------- -------------------------------------------------- -- | General (affine) transformations, represented by an invertible -- linear map, its /transpose/, and a vector representing a -- translation component. -- -- By the /transpose/ of a linear map we mean simply the linear map -- corresponding to the transpose of the map's matrix -- representation. For example, any scale is its own transpose, -- since scales are represented by matrices with zeros everywhere -- except the diagonal. The transpose of a rotation is the same as -- its inverse. -- -- The reason we need to keep track of transposes is because it -- turns out that when transforming a shape according to some linear -- map L, the shape's /normal vectors/ transform according to L's -- inverse transpose. (For a more detailed explanation and proof, -- see .) -- This is exactly what we need when transforming bounding -- functions, which are defined in terms of /perpendicular/ -- (i.e. normal) hyperplanes. -- -- For more general, non-invertible transformations, see -- @Diagrams.Deform@ (in @diagrams-lib@). data Transformation v n = Transformation (v n :-: v n) (v n :-: v n) (v n) type instance V (Transformation v n) = v type instance N (Transformation v n) = n -- | Identity matrix. eye :: (HasBasis v, Num n) => v (v n) eye = tabulate $ \(E e) -> zero & e .~ 1 -- | Invert a transformation. inv :: (Functor v, Num n) => Transformation v n -> Transformation v n inv (Transformation t t' v) = Transformation (linv t) (linv t') (negated (lapp (linv t) v)) -- | Get the transpose of a transformation (ignoring the translation -- component). transp :: Transformation v n -> (v n :-: v n) transp (Transformation _ t' _) = t' -- | Get the translational component of a transformation. transl :: Transformation v n -> v n transl (Transformation _ _ v) = v -- | Drop the translational component of a transformation, leaving only -- the linear part. dropTransl :: (Additive v, Num n) => Transformation v n -> Transformation v n dropTransl (Transformation a a' _) = Transformation a a' zero -- | Transformations are closed under composition; @t1 <> t2@ is the -- transformation which performs first @t2@, then @t1@. instance (Additive v, Num n) => Semigroup (Transformation v n) where Transformation t1 t1' v1 <> Transformation t2 t2' v2 = Transformation (t1 <> t2) (t2' <> t1') (v1 ^+^ lapp t1 v2) instance (Additive v, Num n) => Monoid (Transformation v n) where mempty = Transformation mempty mempty zero mappend = (<>) -- | Transformations can act on transformable things. instance (Transformable a, V a ~ v, N a ~ n) => Action (Transformation v n) a where act = transform -- | Apply a transformation to a vector. Note that any translational -- component of the transformation will not affect the vector, since -- vectors are invariant under translation. apply :: Transformation v n -> v n -> v n apply (Transformation (t :-: _) _ _) = t -- | Apply a transformation to a point. papply :: (Additive v, Num n) => Transformation v n -> Point v n -> Point v n papply (Transformation t _ v) (P p) = P $ lapp t p ^+^ v -- | Create a general affine transformation from an invertible linear -- transformation and its transpose. The translational component is -- assumed to be zero. fromLinear :: (Additive v, Num n) => (v n :-: v n) -> (v n :-: v n) -> Transformation v n fromLinear l1 l2 = Transformation l1 l2 zero -- | An orthogonal linear map is one whose inverse is also its transpose. fromOrthogonal :: (Additive v, Num n) => (v n :-: v n) -> Transformation v n fromOrthogonal t = fromLinear t (linv t) -- | A symmetric linear map is one whose transpose is equal to its self. fromSymmetric :: (Additive v, Num n) => (v n :-: v n) -> Transformation v n fromSymmetric t = fromLinear t t -- | Get the dimension of an object whose vector space is an instance of -- @HasLinearMap@, e.g. transformations, paths, diagrams, etc. dimension :: forall a v. (V a ~ v, Additive v, Traversable v) => a -> Int dimension _ = length (basis :: [v Int]) -- | Get the matrix equivalent of the linear transform, -- (as a list of columns) and the translation vector. This -- is mostly useful for implementing backends. onBasis :: (Additive v, Traversable v, Num n) => Transformation v n -> ([v n], v n) onBasis (Transformation (f :-: _) _ t) = (map f basis, t) -- Remove the nth element from a list remove :: Int -> [a] -> [a] remove n xs = ys ++ tail zs where (ys, zs) = splitAt n xs -- Minor matrix of cofactore C(i,j) minor :: Int -> Int -> [[a]] -> [[a]] minor i j xs = remove j $ map (remove i) xs -- The determinant of a square matrix represented as a list of lists -- representing column vectors, that is [column]. det :: Num a => [[a]] -> a det (a:[]) = head a det m = sum [(-1)^i * (c1 !! i) * det (minor i 0 m) | i <- [0 .. (n-1)]] where c1 = head m n = length m -- | Convert a vector v to a list of scalars. listRep :: Foldable v => v n -> [n] listRep = toList -- | Convert the linear part of a `Transformation` to a matrix -- representation as a list of column vectors which are also lists. matrixRep :: (Additive v, Traversable v, Num n) => Transformation v n -> [[n]] matrixRep (Transformation (f :-: _) _ _) = map (toList . f) basis -- | Convert a `Transformation v` to a homogeneous matrix representation. -- The final list is the translation. -- The representation leaves off the last row of the matrix as it is -- always [0,0, ... 1] and this representation is the defacto standard -- for backends. matrixHomRep :: (Additive v, Traversable v, Num n) => Transformation v n -> [[n]] matrixHomRep t = mr ++ [toList tl] where mr = matrixRep t tl = transl t -- | The determinant of (the linear part of) a `Transformation`. determinant :: (Additive v, Traversable v, Num n) => Transformation v n -> n determinant = det . matrixRep -- | Determine whether a `Transformation` includes a reflection -- component, that is, whether it reverses orientation. isReflection :: (Additive v, Traversable v, Num n, Ord n) => Transformation v n -> Bool isReflection = (<0) . determinant -- | Compute the \"average\" amount of scaling performed by a -- transformation. Satisfies the properties -- -- @ -- avgScale (scaling k) == k -- avgScale (t1 <> t2) == avgScale t1 * avgScale t2 -- @ -- avgScale :: (Additive v, Traversable v, Floating n) => Transformation v n -> n avgScale t = (abs . determinant) t ** (recip . fromIntegral . dimension) t {- avgScale is computed as the nth root of the positive determinant. This works because the determinant is the factor by which a transformation scales area/volume. See http://en.wikipedia.org/wiki/Determinant. Proofs for the specified properties: 1. |det (scaling k)|^(1/n) = (k^n)^(1/n) = k 2. |det t1|^(1/n) * |det t2|^(1/n) = (|det t1| * |det t2|)^(1/n) = |det t1 * det t2|^(1/n) = |det (t1 <> t2)|^(1/n) -} ------------------------------------------------------------ -- The Transformable class ------------------------------- ------------------------------------------------------------ -- | 'HasLinearMap' is a poor man's class constraint synonym, just to -- help shorten some of the ridiculously long constraint sets. class (HasBasis v, Traversable v) => HasLinearMap v instance (HasBasis v, Traversable v) => HasLinearMap v -- | An 'Additive' vector space whose representation is made up of basis elements. class (Additive v, Representable v, Rep v ~ E v) => HasBasis v instance (Additive v, Representable v, Rep v ~ E v) => HasBasis v -- | Type class for things @t@ which can be transformed. class Transformable t where -- | Apply a transformation to an object. transform :: Transformation (V t) (N t) -> t -> t instance (Additive v, Num n) => Transformable (Transformation v n) where transform t1 t2 = t1 <> t2 instance (Additive v, Num n) => HasOrigin (Transformation v n) where moveOriginTo p = translate (origin .-. p) instance (Transformable t, Transformable s, V t ~ V s, N t ~ N s) => Transformable (t, s) where transform t (x,y) = ( transform t x , transform t y ) instance (Transformable t, Transformable s, Transformable u, V s ~ V t, N s ~ N t, V s ~ V u, N s ~ N u) => Transformable (t,s,u) where transform t (x,y,z) = ( transform t x , transform t y , transform t z ) -- Transform functions by conjugation. That is, reverse-transform argument and -- forward-transform result. Intuition: If someone shrinks you, you see your -- environment enlarged. If you rotate right, you see your environment -- rotating left. Etc. This technique was used extensively in Pan for modular -- construction of image filters. Works well for curried functions, since all -- arguments get inversely transformed. instance ( V t ~ v, N t ~ n, V t ~ V s, N t ~ N s, Functor v, Num n , Transformable t, Transformable s) => Transformable (s -> t) where transform tr f = transform tr . f . transform (inv tr) instance Transformable t => Transformable [t] where transform = map . transform instance (Transformable t, Ord t) => Transformable (S.Set t) where transform = S.map . transform instance Transformable t => Transformable (M.Map k t) where transform = M.map . transform instance (Additive v, Num n) => Transformable (Point v n) where transform = papply instance Transformable m => Transformable (Deletable m) where transform = fmap . transform ------------------------------------------------------------ -- Translational invariance ------------------------------ ------------------------------------------------------------ -- | @TransInv@ is a wrapper which makes a transformable type -- translationally invariant; the translational component of -- transformations will no longer affect things wrapped in -- @TransInv@. newtype TransInv t = TransInv t deriving (Eq, Ord, Show, Semigroup, Monoid) instance Wrapped (TransInv t) where type Unwrapped (TransInv t) = t _Wrapped' = iso (\(TransInv t) -> t) TransInv instance Rewrapped (TransInv t) (TransInv t') type instance V (TransInv t) = V t type instance N (TransInv t) = N t instance HasOrigin (TransInv t) where moveOriginTo = const id instance (Num (N t), Additive (V t), Transformable t) => Transformable (TransInv t) where transform (Transformation a a' _) (TransInv t) = TransInv (transform (Transformation a a' zero) t) ------------------------------------------------------------ -- Generic transformations ------------------------------- ------------------------------------------------------------ -- | Create a translation. translation :: v n -> Transformation v n translation = Transformation mempty mempty -- | Translate by a vector. translate :: (Num (N t), Transformable t) => Vn t -> t -> t translate = transform . translation -- | Create a uniform scaling transformation. scaling :: (Additive v, Fractional n) => n -> Transformation v n scaling s = fromSymmetric lin where lin = (s *^) <-> (^/ s) -- | Scale uniformly in every dimension by the given scalar. scale :: (InSpace v n a, Eq n, Fractional n, Transformable a) => n -> a -> a scale 0 = error "scale by zero! Halp!" -- XXX what should be done here? scale s = transform $ scaling s