{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Transform -- Copyright : (c) 2011 diagrams-lib team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- Transformations specific to two dimensions, with a few generic -- transformations (uniform scaling, translation) also re-exported for -- convenience. -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Transform ( -- * Rotation rotation, rotate, rotateBy , rotationAbout, rotateAbout -- * Scaling , scalingX, scaleX , scalingY, scaleY , scaling, scale , scaleToX, scaleToY , scaleUToX, scaleUToY -- * Translation , translationX, translateX , translationY, translateY , translation, translate -- * Reflection , reflectionX, reflectX , reflectionY, reflectY , reflectionAbout, reflectAbout -- * Shears , shearingX, shearX , shearingY, shearY -- * Utilities , onBasis , avgScale ) where import Diagrams.Core import qualified Diagrams.Core.Transform as T import Diagrams.Transform import Diagrams.TwoD.Size (height, width) import Diagrams.TwoD.Types import Diagrams.TwoD.Vector (direction) import Diagrams.Coordinates import Data.AdditiveGroup import Data.AffineSpace import Data.Semigroup import Control.Lens (review, (^.)) -- Rotation ------------------------------------------------ -- | Create a transformation which performs a rotation about the local -- origin by the given angle. See also 'rotate'. rotation :: Angle -> T2 rotation ang = fromLinear r (linv r) where r = rot theta <-> rot (-theta) theta = ang^.rad rot th (coords -> x :& y) = (cos th * x - sin th * y) ^& (sin th * x + cos th * y) -- | Rotate about the local origin by the given angle. Positive angles -- correspond to counterclockwise rotation, negative to -- clockwise. The angle can be expressed using any of the 'Iso's on -- 'Angle'. For example, @rotate (1\/4 \@\@ 'turn')@, @rotate -- (tau\/4 \@\@ rad)@, and @rotate (90 \@\@ deg)@ all -- represent the same transformation, namely, a counterclockwise -- rotation by a right angle. To rotate about some point other than -- the local origin, see 'rotateAbout'. -- -- Note that writing @rotate (1\/4)@, with no 'Angle' constructor, -- will yield an error since GHC cannot figure out which sort of -- angle you want to use. In this common situation you can use -- 'rotateBy', which interprets its argument as a number of turns. rotate :: (Transformable t, V t ~ R2) => Angle -> t -> t rotate = transform . rotation -- | A synonym for 'rotate', interpreting its argument in units of -- turns; it can be more convenient to write @rotateBy (1\/4)@ than -- @'rotate' (1\/4 \@\@ 'turn')@. rotateBy :: (Transformable t, V t ~ R2) => Double -> t -> t rotateBy = transform . rotation . review turn -- | @rotationAbout p@ is a rotation about the point @p@ (instead of -- around the local origin). rotationAbout :: P2 -> Angle -> T2 rotationAbout p angle = conjugate (translation (origin .-. p)) (rotation angle) -- | @rotateAbout p@ is like 'rotate', except it rotates around the -- point @p@ instead of around the local origin. rotateAbout :: (Transformable t, V t ~ R2) => P2 -> Angle -> t -> t rotateAbout p angle = rotate angle `under` translation (origin .-. p) -- Scaling ------------------------------------------------- -- | Construct a transformation which scales by the given factor in -- the x (horizontal) direction. scalingX :: Double -> T2 scalingX c = fromLinear s s where s = (\(R2 x y) -> R2 (x*c) y) <-> (\(R2 x y) -> R2 (x/c) y) -- | Scale a diagram by the given factor in the x (horizontal) -- direction. To scale uniformly, use 'scale'. scaleX :: (Transformable t, V t ~ R2) => Double -> t -> t scaleX = transform . scalingX -- | Construct a transformation which scales by the given factor in -- the y (vertical) direction. scalingY :: Double -> T2 scalingY c = fromLinear s s where s = (\(R2 x y) -> R2 x (y*c)) <-> (\(R2 x y) -> R2 x (y/c)) -- | Scale a diagram by the given factor in the y (vertical) -- direction. To scale uniformly, use 'scale'. scaleY :: (Transformable t, V t ~ R2) => Double -> t -> t scaleY = transform . scalingY -- | @scaleToX w@ scales a diagram in the x (horizontal) direction by -- whatever factor required to make its width @w@. @scaleToX@ -- should not be applied to diagrams with a width of 0, such as -- 'vrule'. scaleToX :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleToX w d = scaleX (w / width d) d -- | @scaleToY h@ scales a diagram in the y (vertical) direction by -- whatever factor required to make its height @h@. @scaleToY@ -- should not be applied to diagrams with a height of 0, such as -- 'hrule'. scaleToY :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleToY h d = scaleY (h / height d) d -- | @scaleUToX w@ scales a diagram /uniformly/ by whatever factor -- required to make its width @w@. @scaleUToX@ should not be -- applied to diagrams with a width of 0, such as 'vrule'. scaleUToX :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleUToX w d = scale (w / width d) d -- | @scaleUToY h@ scales a diagram /uniformly/ by whatever factor -- required to make its height @h@. @scaleUToY@ should not be applied -- to diagrams with a height of 0, such as 'hrule'. scaleUToY :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleUToY h d = scale (h / height d) d -- Translation --------------------------------------------- -- | Construct a transformation which translates by the given distance -- in the x (horizontal) direction. translationX :: Double -> T2 translationX x = translation (x ^& 0) -- | Translate a diagram by the given distance in the x (horizontal) -- direction. translateX :: (Transformable t, V t ~ R2) => Double -> t -> t translateX = transform . translationX -- | Construct a transformation which translates by the given distance -- in the y (vertical) direction. translationY :: Double -> T2 translationY y = translation (0 ^& y) -- | Translate a diagram by the given distance in the y (vertical) -- direction. translateY :: (Transformable t, V t ~ R2) => Double -> t -> t translateY = transform . translationY -- Reflection ---------------------------------------------- -- | Construct a transformation which flips a diagram from left to -- right, i.e. sends the point (x,y) to (-x,y). reflectionX :: T2 reflectionX = scalingX (-1) -- | Flip a diagram from left to right, i.e. send the point (x,y) to -- (-x,y). reflectX :: (Transformable t, V t ~ R2) => t -> t reflectX = transform reflectionX -- | Construct a transformation which flips a diagram from top to -- bottom, i.e. sends the point (x,y) to (x,-y). reflectionY :: T2 reflectionY = scalingY (-1) -- | Flip a diagram from top to bottom, i.e. send the point (x,y) to -- (x,-y). reflectY :: (Transformable t, V t ~ R2) => t -> t reflectY = transform reflectionY -- | @reflectionAbout p v@ is a reflection in the line determined by -- the point @p@ and vector @v@. reflectionAbout :: P2 -> R2 -> T2 reflectionAbout p v = conjugate (rotation (negateV $ direction v) <> translation (origin .-. p)) reflectionY -- | @reflectAbout p v@ reflects a diagram in the line determined by -- the point @p@ and the vector @v@. reflectAbout :: (Transformable t, V t ~ R2) => P2 -> R2 -> t -> t reflectAbout p v = transform (reflectionAbout p v) -- Shears -------------------------------------------------- -- | @shearingX d@ is the linear transformation which is the identity on -- y coordinates and sends @(0,1)@ to @(d,1)@. shearingX :: Double -> T2 shearingX d = fromLinear (sh d <-> sh (-d)) (sh' d <-> sh' (-d)) where sh k (R2 x y) = R2 (x+k*y) y sh' k = swap . sh k . swap swap (R2 x y) = R2 y x -- | @shearX d@ performs a shear in the x-direction which sends -- @(0,1)@ to @(d,1)@. shearX :: (Transformable t, V t ~ R2) => Double -> t -> t shearX = transform . shearingX -- | @shearingY d@ is the linear transformation which is the identity on -- x coordinates and sends @(1,0)@ to @(1,d)@. shearingY :: Double -> T2 shearingY d = fromLinear (sh d <-> sh (-d)) (sh' d <-> sh' (-d)) where sh k (R2 x y) = R2 x (y+k*x) sh' k = swap . sh k . swap swap (R2 x y) = R2 y x -- | @shearY d@ performs a shear in the y-direction which sends -- @(1,0)@ to @(1,d)@. shearY :: (Transformable t, V t ~ R2) => Double -> t -> t shearY = transform . shearingY -- | Get the matrix equivalent of the linear transform, -- (as a pair of columns) and the translation vector. This -- is mostly useful for implementing backends. onBasis :: Transformation R2 -> ((R2, R2), R2) onBasis t = ((x, y), v) where ((x:y:[]), v) = T.onBasis t -- | Compute the \"average\" amount of scaling performed by a -- transformation. Satisfies the properties -- -- @ -- avgScale (scaling k) == k -- avgScale (t1 <> t2) == avgScale t1 * avgScale t2 -- @ -- -- Backends which do not support stroking in the context of an -- arbitrary transformation may instead call 'avgScale' on -- \"frozen\" transformations and multiply the line width by the -- resulting value. avgScale :: T2 -> Double avgScale t = sqrt (abs (x1*y2 - y1*x2)) where ((unr2 -> (x1,y1), unr2 -> (x2,y2)), _) = onBasis t {- avgScale is computed as the square root of the positive determinant. Proofs for the specified properties: 1. sqrt (|det (scaling k)|) = sqrt (k^2) = k 2. sqrt (|det t1|) * sqrt (|det t2|) = sqrt (|det t1| * |det t2|) = sqrt (|det t1 * det t2|) = sqrt (|det (t1 * t2)|) From wikipedia: A geometric interpretation can be given to the value of the determinant of a square matrix with real entries: the absolute value of the determinant gives the scale factor by which area or volume (or a higher dimensional analogue) is multiplied under the associated linear transformation, while its sign indicates whether the transformation preserves orientation. -}