{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -fno-warn-orphans #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Path -- Copyright : (c) 2011 diagrams-lib team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- Paths in two dimensions are special since we may stroke them to -- create a 2D diagram, and (eventually) perform operations such as -- intersection and union. They also have a trace, whereas paths in -- higher dimensions do not. -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Path ( -- * Constructing path-based diagrams stroke, stroke' , strokePath, strokeP, strokePath', strokeP' , strokeTrail, strokeT, strokeTrail', strokeT' , strokeLine, strokeLoop , strokeLocTrail, strokeLocT, strokeLocLine, strokeLocLoop -- ** Stroke options , FillRule(..) , getFillRule, fillRule, _fillRule , StrokeOpts(..), vertexNames, queryFillRule -- ** Inside/outside testing , isInsideWinding, isInsideEvenOdd -- * Clipping , Clip(..), _Clip, _clip , clipBy, clipTo, clipped -- * Intersections , intersectPoints, intersectPoints' , intersectPointsP, intersectPointsP' , intersectPointsT, intersectPointsT' ) where import Control.Applicative (liftA2) import Control.Lens hiding (at, transform) import qualified Data.Foldable as F import Data.Semigroup import Data.Typeable import Data.Default.Class import Diagrams.Angle import Diagrams.Combinators (withEnvelope, withTrace) import Diagrams.Core import Diagrams.Core.Trace import Diagrams.Located (Located, mapLoc, unLoc) import Diagrams.Parametric import Diagrams.Path import Diagrams.Segment import Diagrams.Solve.Polynomial import Diagrams.Trail import Diagrams.TrailLike import Diagrams.TwoD.Segment import Diagrams.TwoD.Types import Diagrams.TwoD.Vector import Diagrams.Util (tau) import Linear.Affine import Linear.Vector ------------------------------------------------------------ -- Trail and path traces --------------------------------- ------------------------------------------------------------ -- Only 2D trails and paths have a trace. -- XXX can the efficiency of this be improved? See the comment in -- Diagrams.Path on the Enveloped instance for Trail. instance RealFloat n => Traced (Trail V2 n) where getTrace = withLine $ foldr (\seg bds -> moveOriginBy (negated . atEnd $ seg) bds <> getTrace seg) mempty . lineSegments instance RealFloat n => Traced (Path V2 n) where getTrace = F.foldMap getTrace . op Path ------------------------------------------------------------ -- Constructing path-based diagrams ---------------------- ------------------------------------------------------------ -- | Enumeration of algorithms or \"rules\" for determining which -- points lie in the interior of a (possibly self-intersecting) -- path. data FillRule = Winding -- ^ Interior points are those with a nonzero -- /winding/ /number/. See -- . | EvenOdd -- ^ Interior points are those where a ray -- extended infinitely in a particular -- direction crosses the path an odd number -- of times. See -- . deriving (Show, Typeable, Eq, Ord) instance AttributeClass FillRule instance Semigroup FillRule where _ <> b = b instance Default FillRule where def = Winding -- | A record of options that control how a path is stroked. -- @StrokeOpts@ is an instance of 'Default', so a @StrokeOpts@ -- records can be created using @'with' { ... }@ notation. data StrokeOpts a = StrokeOpts { _vertexNames :: [[a]] , _queryFillRule :: FillRule } makeLensesWith (generateSignatures .~ False $ lensRules) ''StrokeOpts -- | Atomic names that should be assigned to the vertices of the path so that -- they can be referenced later. If there are not enough names, the extra -- vertices are not assigned names; if there are too many, the extra names -- are ignored. Note that this is a /list of lists/ of names, since paths -- can consist of multiple trails. The first list of names are assigned to -- the vertices of the first trail, the second list to the second trail, and -- so on. -- -- The default value is the empty list. vertexNames :: forall a a'. Lens (StrokeOpts a) (StrokeOpts a') [[a]] [[a']] -- | The fill rule used for determining which points are inside the path. -- The default is 'Winding'. NOTE: for now, this only affects the resulting -- diagram's 'Query', /not/ how it will be drawn! To set the fill rule -- determining how it is to be drawn, use the 'fillRule' function. queryFillRule :: forall a. Lens' (StrokeOpts a) FillRule instance Default (StrokeOpts a) where def = StrokeOpts { _vertexNames = [] , _queryFillRule = def } -- | Convert a 'ToPath' object into a diagram. The resulting diagram has the -- names 0, 1, ... assigned to each of the path's vertices. -- -- See also 'stroke'', which takes an extra options record allowing -- its behaviour to be customized. stroke :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b) => t -> QDiagram b V2 n Any stroke = strokeP . toPath -- | A variant of 'stroke' that takes an extra record of options to -- customize its behaviour. In particular: -- -- * Names can be assigned to the path's vertices -- -- 'StrokeOpts' is an instance of 'Default', so @stroke' ('with' & -- ... )@ syntax may be used. stroke' :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> t -> QDiagram b V2 n Any stroke' opts = strokeP' opts . toPath -- | 'stroke' specialised to 'Path'. strokeP :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n -> QDiagram b V2 n Any strokeP = strokeP' (def :: StrokeOpts ()) -- | 'stroke' specialised to 'Path'. strokePath :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n -> QDiagram b V2 n Any strokePath = strokeP instance (TypeableFloat n, Renderable (Path V2 n) b) => TrailLike (QDiagram b V2 n Any) where trailLike = strokeP . trailLike -- | 'stroke'' specialised to 'Path'. strokeP' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Path V2 n -> QDiagram b V2 n Any strokeP' opts path | null (pLines ^. _Wrapped') = mkP pLoops | null (pLoops ^. _Wrapped') = mkP pLines | otherwise = mkP pLines <> mkP pLoops where (pLines,pLoops) = partitionPath (isLine . unLoc) path mkP p = mkQD (Prim p) (getEnvelope p) (getTrace p) (fromNames . concat $ zipWith zip (opts^.vertexNames) ((map . map) subPoint (pathVertices p)) ) (Query $ Any . flip (runFillRule (opts^.queryFillRule)) p) -- | 'stroke'' specialised to 'Path'. strokePath' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Path V2 n -> QDiagram b V2 n Any strokePath' = strokeP' -- | 'stroke' specialised to 'Trail'. strokeTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n -> QDiagram b V2 n Any strokeTrail = stroke . pathFromTrail -- | 'stroke' specialised to 'Trail'. strokeT :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n -> QDiagram b V2 n Any strokeT = strokeTrail -- | A composition of 'stroke'' and 'pathFromTrail' for conveniently -- converting a trail directly into a diagram. strokeTrail' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Trail V2 n -> QDiagram b V2 n Any strokeTrail' opts = stroke' opts . pathFromTrail -- | Deprecated synonym for 'strokeTrail''. strokeT' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Trail V2 n -> QDiagram b V2 n Any strokeT' = strokeTrail' -- | A composition of 'strokeT' and 'wrapLine' for conveniently -- converting a line directly into a diagram. strokeLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Line V2 n -> QDiagram b V2 n Any strokeLine = strokeT . wrapLine -- | A composition of 'strokeT' and 'wrapLoop' for conveniently -- converting a loop directly into a diagram. strokeLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Loop V2 n -> QDiagram b V2 n Any strokeLoop = strokeT . wrapLoop -- | A convenience function for converting a @Located Trail@ directly -- into a diagram; @strokeLocTrail = stroke . trailLike@. strokeLocTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) -> QDiagram b V2 n Any strokeLocTrail = strokeP . trailLike -- | Deprecated synonym for 'strokeLocTrail'. strokeLocT :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) -> QDiagram b V2 n Any strokeLocT = strokeLocTrail -- | A convenience function for converting a @Located@ line directly -- into a diagram; @strokeLocLine = stroke . trailLike . mapLoc wrapLine@. strokeLocLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Line V2 n) -> QDiagram b V2 n Any strokeLocLine = strokeP . trailLike . mapLoc wrapLine -- | A convenience function for converting a @Located@ loop directly -- into a diagram; @strokeLocLoop = stroke . trailLike . mapLoc wrapLoop@. strokeLocLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Loop V2 n) -> QDiagram b V2 n Any strokeLocLoop = strokeP . trailLike . mapLoc wrapLoop ------------------------------------------------------------ -- Inside/outside testing ------------------------------------------------------------ runFillRule :: RealFloat n => FillRule -> Point V2 n -> Path V2 n -> Bool runFillRule Winding = isInsideWinding runFillRule EvenOdd = isInsideEvenOdd -- | Extract the fill rule from a 'FillRuleA' attribute. getFillRule :: FillRule -> FillRule getFillRule = id -- | Specify the fill rule that should be used for determining which -- points are inside a path. fillRule :: HasStyle a => FillRule -> a -> a fillRule = applyAttr -- | Lens onto the fill rule of a style. _fillRule :: Lens' (Style V2 n) FillRule _fillRule = atAttr . non def -- XXX link to more info on this -- | Test whether the given point is inside the given path, -- by testing whether the point's /winding number/ is nonzero. Note -- that @False@ is /always/ returned for paths consisting of lines -- (as opposed to loops), regardless of the winding number. isInsideWinding :: RealFloat n => Point V2 n -> Path V2 n -> Bool isInsideWinding p = (/= 0) . crossings p -- | Test whether the given point is inside the given path, -- by testing whether a ray extending from the point in the positive -- x direction crosses the path an even (outside) or odd (inside) -- number of times. Note that @False@ is /always/ returned for -- paths consisting of lines (as opposed to loops), regardless of -- the number of crossings. isInsideEvenOdd :: RealFloat n => Point V2 n -> Path V2 n -> Bool isInsideEvenOdd p = odd . crossings p -- | Compute the sum of /signed/ crossings of a path as we travel in the -- positive x direction from a given point. crossings :: RealFloat n => Point V2 n -> Path V2 n -> Int crossings p = F.sum . map (trailCrossings p) . op Path -- | Compute the sum of signed crossings of a trail starting from the -- given point in the positive x direction. trailCrossings :: RealFloat n => Point V2 n -> Located (Trail V2 n) -> Int -- non-loop trails have no inside or outside, so don't contribute crossings trailCrossings _ t | not (isLoop (unLoc t)) = 0 trailCrossings p@(unp2 -> (x,y)) tr = sum . map test $ fixTrail tr where test (FLinear a@(unp2 -> (_,ay)) b@(unp2 -> (_,by))) | ay <= y && by > y && isLeft a b > 0 = 1 | by <= y && ay > y && isLeft a b < 0 = -1 | otherwise = 0 test c@(FCubic (P x1@(V2 _ x1y)) (P c1@(V2 _ c1y)) (P c2@(V2 _ c2y)) (P x2@(V2 _ x2y)) ) = sum . map testT $ ts where ts = filter (liftA2 (&&) (>=0) (<=1)) $ cubForm (- x1y + 3*c1y - 3*c2y + x2y) ( 3*x1y - 6*c1y + 3*c2y) (-3*x1y + 3*c1y) (x1y - y) testT t = let (unp2 -> (px,_)) = c `atParam` t in if px > x then signFromDerivAt t else 0 signFromDerivAt t = let v = (3*t*t) *^ ((-1)*^x1 ^+^ 3*^c1 ^-^ 3*^c2 ^+^ x2) ^+^ (2*t) *^ (3*^x1 ^-^ 6*^c1 ^+^ 3*^c2) ^+^ ((-3)*^x1 ^+^ 3*^c1) ang = v ^. _theta . rad in case () of _ | 0 < ang && ang < tau/2 && t < 1 -> 1 | -tau/2 < ang && ang < 0 && t > 0 -> -1 | otherwise -> 0 isLeft a b = cross2 (b .-. a) (p .-. a) ------------------------------------------------------------ -- Clipping ---------------------------------------------- ------------------------------------------------------------ -- | @Clip@ tracks the accumulated clipping paths applied to a -- diagram. Note that the semigroup structure on @Clip@ is list -- concatenation, so applying multiple clipping paths is sensible. -- The clipping region is the intersection of all the applied -- clipping paths. newtype Clip n = Clip [Path V2 n] deriving (Typeable, Semigroup) makeWrapped ''Clip instance Typeable n => AttributeClass (Clip n) instance AsEmpty (Clip n) where _Empty = _Clip . _Empty type instance V (Clip n) = V2 type instance N (Clip n) = n instance (OrderedField n) => Transformable (Clip n) where transform t (Clip ps) = Clip (transform t ps) _Clip :: Iso (Clip n) (Clip n') [Path V2 n] [Path V2 n'] _Clip = _Wrapped -- | Lens onto the Clip in a style. An empty list means no clipping. _clip :: (Typeable n, OrderedField n) => Lens' (Style V2 n) [Path V2 n] _clip = atTAttr . non' _Empty . _Clip -- | Clip a diagram by the given path: -- -- * Only the parts of the diagram which lie in the interior of the -- path will be drawn. -- -- * The envelope of the diagram is unaffected. clipBy :: (HasStyle a, V a ~ V2, N a ~ n, TypeableFloat n) => Path V2 n -> a -> a clipBy = applyTAttr . Clip . (:[]) -- | Clip a diagram to the given path setting its envelope to the -- pointwise minimum of the envelopes of the diagram and path. The -- trace consists of those parts of the original diagram's trace -- which fall within the clipping path, or parts of the path's trace -- within the original diagram. clipTo :: TypeableFloat n => Path V2 n -> QDiagram b V2 n Any -> QDiagram b V2 n Any clipTo p d = setTrace intersectionTrace . toEnvelope $ clipBy p d where envP = appEnvelope . getEnvelope $ p envD = appEnvelope . getEnvelope $ d toEnvelope = case (envP, envD) of (Just eP, Just eD) -> setEnvelope . mkEnvelope $ \v -> min (eP v) (eD v) (_, _) -> id intersectionTrace = Trace traceIntersections traceIntersections pt v = -- on boundary of d, inside p onSortedList (filter pInside) (appTrace (getTrace d) pt v) <> -- or on boundary of p, inside d onSortedList (filter dInside) (appTrace (getTrace p) pt v) where newPt dist = pt .+^ v ^* dist pInside dDist = runFillRule Winding (newPt dDist) p dInside pDist = getAny . sample d $ newPt pDist -- | Clip a diagram to the clip path taking the envelope and trace of the clip -- path. clipped :: TypeableFloat n => Path V2 n -> QDiagram b V2 n Any -> QDiagram b V2 n Any clipped p = withTrace p . withEnvelope p . clipBy p ------------------------------------------------------------ -- Intersections ----------------------------------------- ------------------------------------------------------------ -- | Find the intersect points of two objects that can be converted to a path. intersectPoints :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => t -> s -> [P2 n] intersectPoints = intersectPoints' 1e-10 -- | Find the intersect points of two objects that can be converted to a path -- within the given tolerance. intersectPoints' :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => n -> t -> s -> [P2 n] intersectPoints' eps t s = intersectPointsP' eps (toPath t) (toPath s) -- | Compute the intersect points between two paths. intersectPointsP :: OrderedField n => Path V2 n -> Path V2 n -> [P2 n] intersectPointsP = intersectPointsP' 1e-10 -- | Compute the intersect points between two paths within given tolerance. intersectPointsP' :: OrderedField n => n -> Path V2 n -> Path V2 n -> [P2 n] intersectPointsP' eps as bs = do a <- pathTrails as b <- pathTrails bs intersectPointsT' eps a b -- | Compute the intersect points between two located trails. intersectPointsT :: OrderedField n => Located (Trail V2 n) -> Located (Trail V2 n) -> [P2 n] intersectPointsT = intersectPointsT' 1e-10 -- | Compute the intersect points between two located trails within the given -- tolerance. intersectPointsT' :: OrderedField n => n -> Located (Trail V2 n) -> Located (Trail V2 n) -> [P2 n] intersectPointsT' eps as bs = do a <- fixTrail as b <- fixTrail bs intersectPointsS' eps a b