-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Distributive functors -- Dual to Traversable -- -- Distributive functors -- Dual to Traversable @package distributive @version 0.5 module Data.Distributive.Generic class GDistributive g gdistribute :: (GDistributive g, Functor f) => f (g a) -> g (f a) -- | distribute derived from a Generic1 type -- -- This can be used to easily produce a Distributive instance -- for a type with a Generic1 instance, -- --
--   data V2 a = V2 a a deriving (Show, Functor, Generic1)
--   instance Distributive V2' where distribute = genericDistribute
--   
genericDistribute :: (Functor f, Generic1 g, GDistributive (Rep1 g)) => f (g a) -> g (f a) instance Data.Distributive.Generic.GDistributive GHC.Generics.U1 instance (Data.Distributive.Generic.GDistributive a, Data.Distributive.Generic.GDistributive b) => Data.Distributive.Generic.GDistributive (a GHC.Generics.:*: b) instance (GHC.Base.Functor a, GHC.Base.Functor b, Data.Distributive.Generic.GDistributive a, Data.Distributive.Generic.GDistributive b) => Data.Distributive.Generic.GDistributive (a GHC.Generics.:.: b) instance Data.Distributive.Generic.GDistributive GHC.Generics.Par1 instance Data.Distributive.Generic.GDistributive f => Data.Distributive.Generic.GDistributive (GHC.Generics.Rec1 f) instance Data.Distributive.Generic.GDistributive f => Data.Distributive.Generic.GDistributive (GHC.Generics.M1 i c f) module Data.Distributive -- | This is the categorical dual of Traversable. -- -- Due to the lack of non-trivial comonoids in Haskell, we can restrict -- ourselves to requiring a Functor rather than some Coapplicative -- class. Categorically every Distributive functor is actually a -- right adjoint, and so it must be Representable endofunctor -- and preserve all limits. This is a fancy way of saying it isomorphic -- to `(->) x` for some x. -- -- Minimal complete definition: distribute or collect -- -- To be distributable a container will need to have a way to -- consistently zip a potentially infinite number of copies of itself. -- This effectively means that the holes in all values of that type, must -- have the same cardinality, fixed sized vectors, infinite streams, -- functions, etc. and no extra information to try to merge together. class Functor g => Distributive g where distribute = collect id collect f = distribute . fmap f distributeM = fmap unwrapMonad . distribute . WrapMonad collectM f = distributeM . liftM f -- | The dual of sequenceA -- --
--   >>> distribute [(+1),(+2)] 1
--   [2,3]
--   
-- --
--   distribute = collect id
--   
distribute :: (Distributive g, Functor f) => f (g a) -> g (f a) -- |
--   collect f = distribute . fmap f
--   
collect :: (Distributive g, Functor f) => (a -> g b) -> f a -> g (f b) -- | The dual of sequence -- --
--   distributeM = fmap unwrapMonad . distribute . WrapMonad
--   
distributeM :: (Distributive g, Monad m) => m (g a) -> g (m a) -- |
--   collectM = distributeM . liftM f
--   
collectM :: (Distributive g, Monad m) => (a -> g b) -> m a -> g (m b) -- | The dual of traverse -- --
--   cotraverse f = fmap f . distribute
--   
cotraverse :: (Functor f, Distributive g) => (f a -> b) -> f (g a) -> g b -- | The dual of mapM -- --
--   comapM f = fmap f . distributeM
--   
comapM :: (Monad m, Distributive g) => (m a -> b) -> m (g a) -> g b instance Data.Distributive.Distributive Data.Functor.Identity.Identity instance Data.Distributive.Distributive Data.Proxy.Proxy instance Data.Distributive.Distributive (Data.Tagged.Tagged t) instance Data.Distributive.Distributive ((->) e) instance Data.Distributive.Distributive g => Data.Distributive.Distributive (Control.Monad.Trans.Reader.ReaderT e g) instance Data.Distributive.Distributive g => Data.Distributive.Distributive (Control.Monad.Trans.Identity.IdentityT g) instance (Data.Distributive.Distributive f, Data.Distributive.Distributive g) => Data.Distributive.Distributive (Data.Functor.Compose.Compose f g) instance (Data.Distributive.Distributive f, Data.Distributive.Distributive g) => Data.Distributive.Distributive (Data.Functor.Product.Product f g) instance Data.Distributive.Distributive f => Data.Distributive.Distributive (Control.Applicative.Backwards.Backwards f) instance Data.Distributive.Distributive f => Data.Distributive.Distributive (Data.Functor.Reverse.Reverse f) instance Data.Distributive.Distributive Data.Monoid.Dual instance Data.Distributive.Distributive Data.Monoid.Product instance Data.Distributive.Distributive Data.Monoid.Sum instance Data.Distributive.Distributive Data.Complex.Complex