{-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ScopedTypeVariables #-} {- | This module defines the 'Form' type, its instances, core manipulation functions, and a bunch of helper utilities. -} module Ditto.Core where import Control.Applicative (Applicative(..), Alternative(..)) import Control.Monad.Reader (MonadReader (ask), ReaderT, runReaderT) import Control.Monad.State (MonadState (get, put), StateT, evalStateT) import Control.Monad.Trans (lift) import Data.Bifunctor (Bifunctor (..)) import Data.List.NonEmpty (NonEmpty(..)) import Data.Monoid (Monoid (mappend, mempty)) import Data.Text.Lazy (Text, unpack) import Ditto.Result (FormId (..), FormRange (..), Result (..), unitRange, zeroId) ------------------------------------------------------------------------------ -- * Proved ------------------------------------------------------------------------------ -- | Proved records a value, the location that value came from, and something that was proved about the value. data Proved a = Proved { pos :: FormRange , unProved :: a } deriving (Show, Functor) -- | Utility Function: trivially prove nothing about () unitProved :: FormId -> Proved () unitProved formId = Proved { pos = unitRange formId , unProved = () } ------------------------------------------------------------------------------ -- * FormState ------------------------------------------------------------------------------ -- | inner state used by 'Form'. type FormState m input = ReaderT (Environment m input) (StateT FormRange m) -- | used to represent whether a value was found in the form -- submission data, missing from the form submission data, or expected -- that the default value should be used data Value a = Default | Missing | Found a -- | Utility function: Get the current input -- getFormInput :: Monad m => FormState m input (Value input) getFormInput = getFormId >>= getFormInput' -- | Utility function: Gets the input of an arbitrary 'FormId'. -- getFormInput' :: Monad m => FormId -> FormState m input (Value input) getFormInput' id' = do env <- ask case env of NoEnvironment -> pure Default Environment f -> lift $ lift $ f id' -- | Utility function: Get the current range -- getFormRange :: Monad m => FormState m i FormRange getFormRange = get -- | The environment is where you get the actual input per form. -- -- The 'NoEnvironment' constructor is typically used when generating a -- view for a GET request, where no data has yet been submitted. This -- will cause the input elements to use their supplied default values. -- -- Note that 'NoEnviroment' is different than supplying an empty environment. data Environment m input = Environment (FormId -> m (Value input)) | NoEnvironment instance (Semigroup input, Monad m) => Semigroup (Environment m input) where NoEnvironment <> x = x x <> NoEnvironment = x (Environment env1) <> (Environment env2) = Environment $ \id' -> do r1 <- (env1 id') r2 <- (env2 id') case (r1, r2) of (Missing, Missing) -> pure Missing (Default, Missing) -> pure Default (Missing, Default) -> pure Default (Default, Default) -> pure Default (Found x, Found y) -> pure $ Found (x <> y) (Found x, _) -> pure $ Found x (_, Found y) -> pure $ Found y -- | Not quite sure when this is useful and so hard to say if the rules for combining things with Missing/Default are correct instance (Semigroup input, Monad m) => Monoid (Environment m input) where mempty = NoEnvironment mappend = (<>) -- | Utility function: returns the current 'FormId'. This will only make sense -- if the form is not composed -- getFormId :: Monad m => FormState m i FormId getFormId = do FormRange x _ <- get pure x getNamedFormId :: Monad m => String -> FormState m i FormId getNamedFormId name = do FormRange x _ <- get pure $ case x of FormIdCustom _ i -> FormIdCustom name i FormId _ (i :| _) -> FormIdCustom name i -- | Utility function: increment the current 'FormId'. incFormId :: Monad m => FormState m i () incFormId = do FormRange _ endF1 <- get put $ unitRange endF1 -- | A view represents a visual representation of a form. It is composed of a -- function which takes a list of all errors and then produces a new view -- newtype View err v = View { unView :: [(FormRange, err)] -> v } deriving (Semigroup, Monoid, Functor) ------------------------------------------------------------------------------ -- * Form ------------------------------------------------------------------------------ -- | a 'Form' contains a 'View' combined with a validation function -- which will attempt to extract a value from submitted form data. -- -- It is highly parameterized, allowing it work in a wide variety of -- different configurations. You will likely want to make a type alias -- that is specific to your application to make type signatures more -- manageable. -- -- [@m@] A monad which can be used by the validator -- -- [@input@] A framework specific type for representing the raw key/value pairs from the form data -- -- [@err@] A application specific type for err messages -- -- [@view@] The type of data being generated for the view (HSP, Blaze Html, Heist, etc) -- -- [@proof@] A type which names what has been proved about the pure value. @()@ means nothing has been proved. -- -- [@a@] Value pure by form when it is successfully decoded, validated, etc. -- -- -- This type is very similar to the 'Form' type from -- @digestive-functors <= 0.2@. If @proof@ is @()@, then 'Form' is an -- applicative functor and can be used almost exactly like -- @digestive-functors <= 0.2@. newtype Form m input err view a = Form {unForm :: FormState m input (View err view, m (Result err (Proved a)))} deriving (Functor) bracketState :: Monad m => FormState m input a -> FormState m input a bracketState k = do FormRange startF1 _ <- get res <- k FormRange _ endF2 <- get put $ FormRange startF1 endF2 pure res instance (Functor m, Monoid view, Monad m) => Applicative (Form m input err view) where pure a = Form $ do i <- getFormId pure ( View $ const $ mempty , pure $ Ok $ Proved { pos = FormRange i i , unProved = a } ) (Form frmF) <*> (Form frmA) = Form $ do ((view1, mfok), (view2, maok)) <- bracketState $ do res1 <- frmF incFormId res2 <- frmA pure (res1, res2) fok <- lift $ lift $ mfok aok <- lift $ lift $ maok case (fok, aok) of (Error errs1, Error errs2) -> pure (view1 <> view2, pure $ Error $ errs1 ++ errs2) (Error errs1, _) -> pure (view1 <> view2, pure $ Error $ errs1) (_, Error errs2) -> pure (view1 <> view2, pure $ Error $ errs2) (Ok (Proved (FormRange x _) f), Ok (Proved (FormRange _ y) a)) -> pure ( view1 <> view2 , pure $ Ok $ Proved { pos = FormRange x y , unProved = f a } ) instance (Monad m, Monoid view) => Alternative (Form m input err view) where empty = Form $ pure (mempty, pure $ Error mempty) formA <|> formB = Form $ do (_, mres0) <- unForm formA res0 <- lift $ lift mres0 case res0 of Ok _ -> unForm formA Error _ -> unForm formB instance Functor m => Bifunctor (Form m input err) where first = mapView second = fmap instance (Monad m, Monoid view, Semigroup a) => Semigroup (Form m input err view a) where (<>) = liftA2 (<>) instance (Monoid view, Monad m, Semigroup a) => Monoid (Form m input err view a) where mempty = Form $ pure (mempty, pure $ Error mempty) -- | This provides a Monad instance which will stop rendering on err. -- This instance isn't a part of @Form@ because of its undesirable behavior. -- @-XApplicativeDo@ is generally preferred newtype MForm m input err view a = MForm { runMForm :: Form m input err view a } deriving (Functor, Bifunctor, Alternative, Applicative) instance (Monad m, Monoid view) => Monad (MForm m input err view) where (MForm formA) >>= formFunction = MForm $ Form $ do (view0, mfok) <- unForm formA fok :: Result err (Proved a) <- lift $ lift mfok case fok of Ok x -> do (view1, mfok1) <- unForm $ runMForm $ formFunction $ unProved x pure ( view0 <> view1 , mfok1 ) Error errs -> pure (view0, pure $ Error errs) runAsMForm :: (Monad m) => Environment m input -> Text -> Form m input err view a -> m (View err view, m (Result err (Proved a))) runAsMForm env prefix' = runForm env prefix' . runMForm . MForm -- ** Ways to evaluate a Form -- | Run a form runForm :: (Monad m) => Environment m input -> Text -> Form m input err view a -> m (View err view, m (Result err (Proved a))) runForm env prefix' form = evalStateT (runReaderT (unForm form) env) (unitRange (zeroId $ unpack prefix')) -- | Run a form runForm' :: (Monad m) => Environment m input -> Text -> Form m input err view a -> m (view, Maybe a) runForm' env prefix form = do (view', mresult) <- runForm env prefix form result <- mresult pure $ case result of Error e -> (unView view' e, Nothing) Ok x -> (unView view' [], Just (unProved x)) -- | Just evaluate the form to a view. This usually maps to a GET request in the -- browser. viewForm :: (Monad m) => Text -- ^ form prefix -> Form m input err view a -- ^ form to view -> m view viewForm prefix form = do (v, _) <- runForm NoEnvironment prefix form pure (unView v []) -- | Evaluate a form -- -- Returns: -- -- [@Left view@] on failure. The @view@ will have already been applied to the errors. -- -- [@Right a@] on success. -- eitherForm :: (Monad m) => Environment m input -- ^ Input environment -> Text -- ^ Identifier for the form -> Form m input err view a -- ^ Form to run -> m (Either view a) -- ^ Result eitherForm env id' form = do (view', mresult) <- runForm env id' form result <- mresult pure $ case result of Error e -> Left $ unView view' e Ok x -> Right (unProved x) -- | create a 'Form' from some @view@. -- -- This is typically used to turn markup like @\@ into a 'Form'. view :: (Monad m) => view -- ^ View to insert -> Form m input err view () -- ^ Resulting form view view' = Form $ do i <- getFormId pure ( View (const view') , pure ( Ok ( Proved { pos = FormRange i i , unProved = () } ) ) ) -- | Append a unit form to the left. This is useful for adding labels or err -- fields. -- -- The 'Forms' on the left and right hand side will share the same -- 'FormId'. This is useful for elements like @\