/* * the API for FSST compression -- (c) Peter Boncz, Viktor Leis and Thomas Neumann (CWI, TU Munich), 2018-2019 * * =================================================================================================================================== * this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT): * * Copyright 2018-2020, CWI, TU Munich, FSU Jena * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files * (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * You can contact the authors via the FSST source repository : https://github.com/cwida/fsst * =================================================================================================================================== * * FSST: Fast Static Symbol Table compression * see the paper https://github.com/cwida/fsst/raw/master/fsstcompression.pdf * * FSST is a compression scheme focused on string/text data: it can compress strings from distributions with many different values (i.e. * where dictionary compression will not work well). It allows *random-access* to compressed data: it is not block-based, so individual * strings can be decompressed without touching the surrounding data in a compressed block. When compared to e.g. lz4 (which is * block-based), FSST achieves similar decompression speed, (2x) better compression speed and 30% better compression ratio on text. * * FSST encodes strings also using a symbol table -- but it works on pieces of the string, as it maps "symbols" (1-8 byte sequences) * onto "codes" (single-bytes). FSST can also represent a byte as an exception (255 followed by the original byte). Hence, compression * transforms a sequence of bytes into a (supposedly shorter) sequence of codes or escaped bytes. These shorter byte-sequences could * be seen as strings again and fit in whatever your program is that manipulates strings. * * useful property: FSST ensures that strings that are equal, are also equal in their compressed form. * * In this API, strings are considered byte-arrays (byte = unsigned char) and a batch of strings is represented as an array of * unsigned char* pointers to their starts. A seperate length array (of unsigned int) denotes how many bytes each string consists of. * * This representation as unsigned char* pointers tries to assume as little as possible on the memory management of the program * that calls this API, and is also intended to allow passing strings into this API without copying (even if you use C++ strings). * * We optionally support C-style zero-terminated strings (zero appearing only at the end). In this case, the compressed strings are * also zero-terminated strings. In zero-terminated mode, the zero-byte at the end *is* counted in the string byte-length. */ #ifndef FSST_INCLUDED_H #define FSST_INCLUDED_H #ifdef _MSC_VER #define __restrict__ #define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__ #define __ORDER_LITTLE_ENDIAN__ 2 #include static inline int __builtin_ctzl(unsigned long long x) { # ifdef _WIN64 unsigned long ret; _BitScanForward64(&ret, x); return (int)ret; # else unsigned long low, high; bool low_set = _BitScanForward(&low, (unsigned __int32)(x)) != 0; _BitScanForward(&high, (unsigned __int32)(x >> 32)); high += 32; return low_set ? low : high; # endif } #endif #ifdef __cplusplus #define FSST_FALLTHROUGH [[fallthrough]] #include extern "C" { #else #define FSST_FALLTHROUGH #endif #ifndef __has_cpp_attribute // For backwards compatibility #define __has_cpp_attribute(x) 0 #endif #if __has_cpp_attribute(clang::fallthrough) #define DUCKDB_FSST_EXPLICIT_FALLTHROUGH [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) #define DUCKDB_FSST_EXPLICIT_FALLTHROUGH [[gnu::fallthrough]] #else #define DUCKDB_FSST_EXPLICIT_FALLTHROUGH #endif #include /* A compressed string is simply a string of 1-byte codes; except for code 255, which is followed by an uncompressed byte. */ #define FSST_ESC 255 /* Data structure needed for compressing strings - use duckdb_fsst_duplicate() to create thread-local copies. Use duckdb_fsst_destroy() to free. */ typedef void* duckdb_fsst_encoder_t; /* opaque type - it wraps around a rather large (~900KB) C++ object */ /* Data structure needed for decompressing strings - read-only and thus can be shared between multiple decompressing threads. */ typedef struct { unsigned long long version; /* version id */ unsigned char zeroTerminated; /* terminator is a single-byte code that does not appear in longer symbols */ unsigned char len[255]; /* len[x] is the byte-length of the symbol x (1 < len[x] <= 8). */ unsigned long long symbol[255]; /* symbol[x] contains in LITTLE_ENDIAN the bytesequence that code x represents (0 <= x < 255). */ } duckdb_fsst_decoder_t; /* Calibrate a FSST symboltable from a batch of strings (it is best to provide at least 16KB of data). */ duckdb_fsst_encoder_t* duckdb_fsst_create( size_t n, /* IN: number of strings in batch to sample from. */ size_t lenIn[], /* IN: byte-lengths of the inputs */ unsigned char *strIn[], /* IN: string start pointers. */ int zeroTerminated /* IN: whether input strings are zero-terminated. If so, encoded strings are as well (i.e. symbol[0]=""). */ ); /* Create another encoder instance, necessary to do multi-threaded encoding using the same symbol table. */ duckdb_fsst_encoder_t* duckdb_fsst_duplicate( duckdb_fsst_encoder_t *encoder /* IN: the symbol table to duplicate. */ ); #define FSST_MAXHEADER (8+1+8+2048+1) /* maxlen of deserialized fsst header, produced/consumed by duckdb_fsst_export() resp. duckdb_fsst_import() */ /* Space-efficient symbol table serialization (smaller than sizeof(duckdb_fsst_decoder_t) - by saving on the unused bytes in symbols of len < 8). */ unsigned int /* OUT: number of bytes written in buf, at most sizeof(duckdb_fsst_decoder_t) */ duckdb_fsst_export( duckdb_fsst_encoder_t *encoder, /* IN: the symbol table to dump. */ unsigned char *buf /* OUT: pointer to a byte-buffer where to serialize this symbol table. */ ); /* Deallocate encoder. */ void duckdb_fsst_destroy(duckdb_fsst_encoder_t*); /* Return a decoder structure from serialized format (typically used in a block-, file- or row-group header). */ unsigned int /* OUT: number of bytes consumed in buf (0 on failure). */ duckdb_fsst_import( duckdb_fsst_decoder_t *decoder, /* IN: this symbol table will be overwritten. */ unsigned char *buf /* OUT: pointer to a byte-buffer where duckdb_fsst_export() serialized this symbol table. */ ); /* Return a decoder structure from an encoder. */ duckdb_fsst_decoder_t duckdb_fsst_decoder( duckdb_fsst_encoder_t *encoder ); /* Compress a batch of strings (on AVX512 machines best performance is obtained by compressing more than 32KB of string volume). */ /* The output buffer must be large; at least "conservative space" (7+2*inputlength) for the first string for something to happen. */ size_t /* OUT: the number of compressed strings (<=n) that fit the output buffer. */ duckdb_fsst_compress( duckdb_fsst_encoder_t *encoder, /* IN: encoder obtained from duckdb_fsst_create(). */ size_t nstrings, /* IN: number of strings in batch to compress. */ size_t lenIn[], /* IN: byte-lengths of the inputs */ unsigned char *strIn[], /* IN: input string start pointers. */ size_t outsize, /* IN: byte-length of output buffer. */ unsigned char *output, /* OUT: memory buffer to put the compressed strings in (one after the other). */ size_t lenOut[], /* OUT: byte-lengths of the compressed strings. */ unsigned char *strOut[] /* OUT: output string start pointers. Will all point into [output,output+size). */ ); /* Decompress a single string, inlined for speed. */ inline size_t /* OUT: bytesize of the decompressed string. If > size, the decoded output is truncated to size. */ duckdb_fsst_decompress( duckdb_fsst_decoder_t *decoder, /* IN: use this symbol table for compression. */ size_t lenIn, /* IN: byte-length of compressed string. */ unsigned char *strIn, /* IN: compressed string. */ size_t size, /* IN: byte-length of output buffer. */ unsigned char *output /* OUT: memory buffer to put the decompressed string in. */ ) { unsigned char*__restrict__ len = (unsigned char* __restrict__) decoder->len; unsigned char*__restrict__ strOut = (unsigned char* __restrict__) output; unsigned long long*__restrict__ symbol = (unsigned long long* __restrict__) decoder->symbol; size_t code, posOut = 0, posIn = 0; #ifndef FSST_MUST_ALIGN /* defining on platforms that require aligned memory access may help their performance */ #define FSST_UNALIGNED_STORE(dst,src) memcpy((unsigned long long*) (dst), &(src), sizeof(unsigned long long)) #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) while (posOut+32 <= size && posIn+4 <= lenIn) { unsigned int nextBlock, escapeMask; memcpy(&nextBlock, strIn+posIn, sizeof(unsigned int)); escapeMask = (nextBlock&0x80808080u)&((((~nextBlock)&0x7F7F7F7Fu)+0x7F7F7F7Fu)^0x80808080u); if (escapeMask == 0) { code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; } else { unsigned long firstEscapePos=__builtin_ctzl((unsigned long long) escapeMask)>>3; switch(firstEscapePos) { /* Duff's device */ case 3: code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; DUCKDB_FSST_EXPLICIT_FALLTHROUGH; case 2: code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; DUCKDB_FSST_EXPLICIT_FALLTHROUGH; case 1: code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; DUCKDB_FSST_EXPLICIT_FALLTHROUGH; case 0: posIn+=2; strOut[posOut++] = strIn[posIn-1]; /* decompress an escaped byte */ } } } if (posOut+24 <= size) { // handle the possibly 3 last bytes without a loop if (posIn+2 <= lenIn) { strOut[posOut] = strIn[posIn+1]; if (strIn[posIn] != FSST_ESC) { code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; if (strIn[posIn] != FSST_ESC) { code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; } else { posIn += 2; strOut[posOut++] = strIn[posIn-1]; } } else { posIn += 2; posOut++; } } if (posIn < lenIn) { // last code cannot be an escape code = strIn[posIn++]; FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); posOut += len[code]; } } #else while (posOut+8 <= size && posIn < lenIn) if ((code = strIn[posIn++]) < FSST_ESC) { /* symbol compressed as code? */ FSST_UNALIGNED_STORE(strOut+posOut, symbol[code]); /* unaligned memory write */ posOut += len[code]; } else { strOut[posOut] = strIn[posIn]; /* decompress an escaped byte */ posIn++; posOut++; } #endif #endif while (posIn < lenIn) if ((code = strIn[posIn++]) < FSST_ESC) { size_t posWrite = posOut, endWrite = posOut + len[code]; unsigned char* __restrict__ symbolPointer = ((unsigned char* __restrict__) &symbol[code]) - posWrite; if ((posOut = endWrite) > size) endWrite = size; for(; posWrite < endWrite; posWrite++) /* only write if there is room */ strOut[posWrite] = symbolPointer[posWrite]; } else { if (posOut < size) strOut[posOut] = strIn[posIn]; /* idem */ posIn++; posOut++; } if (posOut >= size && (decoder->zeroTerminated&1)) strOut[size-1] = 0; return posOut; /* full size of decompressed string (could be >size, then the actually decompressed part) */ } #ifdef __cplusplus } #endif #endif /* FSST_INCLUDED_H */