/* ****************************************************************** * FSE : Finite State Entropy codec * Public Prototypes declaration * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc. * * You can contact the author at : * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. ****************************************************************** */ #ifndef FSE_H_FSE_STATIC_LINKING_ONLY #define FSE_H_FSE_STATIC_LINKING_ONLY /* *** Dependency *** */ #include "zstd/common/bitstream.h" namespace duckdb_zstd { /* ***************************************** * Static allocation *******************************************/ /* FSE buffer bounds */ #define FSE_NCOUNTBOUND 512 #define FSE_BLOCKBOUND(size) (size + (size>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */) #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1< 12) ? (1 << (maxTableLog - 2)) : 1024) ) size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits); /**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */ size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); /**< build a fake FSE_CTable, designed to compress always the same symbolValue */ /* FSE_buildCTable_wksp() : * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). * `wkspSize` must be >= `(1<= BIT_DStream_completed When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. Checking if DStream has reached its end is performed by : BIT_endOfDStream(&DStream); Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. FSE_endOfDState(&DState); */ /* ***************************************** * FSE unsafe API *******************************************/ static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ /* ***************************************** * Implementation of inlined functions *******************************************/ typedef struct { int deltaFindState; U32 deltaNbBits; } FSE_symbolCompressionTransform; /* total 8 bytes */ MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) { const void* ptr = ct; const U16* u16ptr = (const U16*) ptr; const U32 tableLog = MEM_read16(ptr); statePtr->value = (ptrdiff_t)1<stateTable = u16ptr+2; statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); statePtr->stateLog = tableLog; } /*! FSE_initCState2() : * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) * uses the smallest state value possible, saving the cost of this symbol */ MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) { FSE_initCState(statePtr, ct); { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; const U16* stateTable = (const U16*)(statePtr->stateTable); U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; } } MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) { FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; const U16* const stateTable = (const U16*)(statePtr->stateTable); U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); BIT_addBits(bitC, statePtr->value, nbBitsOut); statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; } MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) { BIT_addBits(bitC, statePtr->value, statePtr->stateLog); BIT_flushBits(bitC); } /* FSE_getMaxNbBits() : * Approximate maximum cost of a symbol, in bits. * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) * note 1 : assume symbolValue is valid (<= maxSymbolValue) * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) { const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; } /* FSE_bitCost() : * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) * note 1 : assume symbolValue is valid (<= maxSymbolValue) * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) { const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; U32 const threshold = (minNbBits+1) << 16; assert(tableLog < 16); assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ { U32 const tableSize = 1 << tableLog; U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ U32 const bitMultiplier = 1 << accuracyLog; assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); assert(normalizedDeltaFromThreshold <= bitMultiplier); return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; } } /* ====== Decompression ====== */ typedef struct { U16 tableLog; U16 fastMode; } FSE_DTableHeader; /* sizeof U32 */ typedef struct { unsigned short newState; unsigned char symbol; unsigned char nbBits; } FSE_decode_t; /* size == U32 */ MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) { const void* ptr = dt; const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); BIT_reloadDStream(bitD); DStatePtr->table = dt + 1; } MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) { FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; return DInfo.symbol; } MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; U32 const nbBits = DInfo.nbBits; size_t const lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; } MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; U32 const nbBits = DInfo.nbBits; BYTE const symbol = DInfo.symbol; size_t const lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } /*! FSE_decodeSymbolFast() : unsafe, only works if no symbol has a probability > 50% */ MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; U32 const nbBits = DInfo.nbBits; BYTE const symbol = DInfo.symbol; size_t const lowBits = BIT_readBitsFast(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) { return DStatePtr->state == 0; } #ifndef FSE_COMMONDEFS_ONLY /* ************************************************************** * Tuning parameters ****************************************************************/ /*!MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ #ifndef FSE_MAX_MEMORY_USAGE # define FSE_MAX_MEMORY_USAGE 14 #endif #ifndef FSE_DEFAULT_MEMORY_USAGE # define FSE_DEFAULT_MEMORY_USAGE 13 #endif /*!FSE_MAX_SYMBOL_VALUE : * Maximum symbol value authorized. * Required for proper stack allocation */ #ifndef FSE_MAX_SYMBOL_VALUE # define FSE_MAX_SYMBOL_VALUE 255 #endif /* ************************************************************** * template functions type & suffix ****************************************************************/ #define FSE_FUNCTION_TYPE BYTE #define FSE_FUNCTION_EXTENSION #define FSE_DECODE_TYPE FSE_decode_t #endif /* !FSE_COMMONDEFS_ONLY */ /* *************************************************************** * Constants *****************************************************************/ #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) #define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" #endif #define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3) } #endif /* FSE_H_FSE_STATIC_LINKING_ONLY */