module Numeric.Array.Family.DoubleX2 () where
#include "MachDeps.h"
import GHC.Base (runRW#)
import GHC.Prim
import GHC.Types (Double (..), RuntimeRep (..),
isTrue#)
import Numeric.Array.ElementWise
import Numeric.Array.Family
import Numeric.Commons
import Numeric.Dimensions
instance Bounded DoubleX2 where
maxBound = case infty of D# x -> DoubleX2# x x
minBound = case negate infty of D# x -> DoubleX2# x x
infty :: Double
infty = read "Infinity"
instance Show DoubleX2 where
show (DoubleX2# a1 a2) = "{ " ++ show (D# a1)
++ ", " ++ show (D# a2)
++ " }"
instance Eq DoubleX2 where
DoubleX2# a1 a2 == DoubleX2# b1 b2 = isTrue# ( (a1 ==## b1)
`andI#` (a2 ==## b2)
)
DoubleX2# a1 a2 /= DoubleX2# b1 b2 = isTrue# ( (a1 /=## b1)
`orI#` (a2 /=## b2)
)
instance Ord DoubleX2 where
DoubleX2# a1 a2 > DoubleX2# b1 b2 = isTrue# ( (a1 >## b1)
`andI#` (a2 >## b2)
)
DoubleX2# a1 a2 < DoubleX2# b1 b2 = isTrue# ( (a1 <## b1)
`andI#` (a2 <## b2)
)
DoubleX2# a1 a2 >= DoubleX2# b1 b2 = isTrue# ( (a1 >=## b1)
`andI#` (a2 >=## b2)
)
DoubleX2# a1 a2 <= DoubleX2# b1 b2 = isTrue# ( (a1 <=## b1)
`andI#` (a2 <=## b2)
)
compare (DoubleX2# a1 a2) (DoubleX2# b1 b2)
| isTrue# (a1 >## b1) = GT
| isTrue# (a1 <## b1) = LT
| isTrue# (a2 >## b2) = GT
| isTrue# (a2 <## b2) = LT
| otherwise = EQ
min (DoubleX2# a1 a2) (DoubleX2# b1 b2) =
DoubleX2# (if isTrue# (a1 >## b1) then b1 else a1)
(if isTrue# (a2 >## b2) then b2 else a2)
max (DoubleX2# a1 a2) (DoubleX2# b1 b2) =
DoubleX2# (if isTrue# (a1 >## b1) then a1 else b1)
(if isTrue# (a2 >## b2) then a2 else b2)
instance Num DoubleX2 where
DoubleX2# a1 a2 + DoubleX2# b1 b2
= DoubleX2# ((+##) a1 b1) ((+##) a2 b2)
DoubleX2# a1 a2 DoubleX2# b1 b2
= DoubleX2# ((-##) a1 b1) ((-##) a2 b2)
DoubleX2# a1 a2 * DoubleX2# b1 b2
= DoubleX2# ((*##) a1 b1) ((*##) a2 b2)
negate (DoubleX2# a1 a2)
= DoubleX2# (negateDouble# a1) (negateDouble# a2)
abs (DoubleX2# a1 a2)
= DoubleX2# (if isTrue# (a1 >=## 0.0##) then a1 else negateDouble# a1)
(if isTrue# (a2 >=## 0.0##) then a2 else negateDouble# a2)
signum (DoubleX2# a1 a2)
= DoubleX2# (if isTrue# (a1 >## 0.0##)
then 1.0##
else if isTrue# (a1 <## 0.0##) then 1.0## else 0.0## )
(if isTrue# (a2 >## 0.0##)
then 1.0##
else if isTrue# (a2 <## 0.0##) then 1.0## else 0.0## )
fromInteger n = case fromInteger n of D# x -> DoubleX2# x x
instance Fractional DoubleX2 where
DoubleX2# a1 a2 / DoubleX2# b1 b2 = DoubleX2# ((/##) a1 b1)
((/##) a2 b2)
recip (DoubleX2# a1 a2) = DoubleX2# ((/##) 1.0## a1)
((/##) 1.0## a2)
fromRational r = case fromRational r of D# x -> DoubleX2# x x
instance Floating DoubleX2 where
pi = DoubleX2# 3.141592653589793238## 3.141592653589793238##
exp (DoubleX2# a1 a2) = DoubleX2# (expDouble# a1)
(expDouble# a2)
log (DoubleX2# a1 a2) = DoubleX2# (logDouble# a1)
(logDouble# a2)
sqrt (DoubleX2# a1 a2) = DoubleX2# (sqrtDouble# a1)
(sqrtDouble# a2)
sin (DoubleX2# a1 a2) = DoubleX2# (sinDouble# a1)
(sinDouble# a2)
cos (DoubleX2# a1 a2) = DoubleX2# (cosDouble# a1)
(cosDouble# a2)
tan (DoubleX2# a1 a2) = DoubleX2# (tanDouble# a1)
(tanDouble# a2)
asin (DoubleX2# a1 a2) = DoubleX2# (asinDouble# a1)
(asinDouble# a2)
acos (DoubleX2# a1 a2) = DoubleX2# (acosDouble# a1)
(acosDouble# a2)
atan (DoubleX2# a1 a2) = DoubleX2# (atanDouble# a1)
(atanDouble# a2)
sinh (DoubleX2# a1 a2) = DoubleX2# (sinDouble# a1)
(sinDouble# a2)
cosh (DoubleX2# a1 a2) = DoubleX2# (coshDouble# a1)
(coshDouble# a2)
tanh (DoubleX2# a1 a2) = DoubleX2# (tanhDouble# a1)
(tanhDouble# a2)
DoubleX2# a1 a2 ** DoubleX2# b1 b2 = DoubleX2# ((**##) a1 b1)
((**##) a2 b2)
logBase x y = log y / log x
asinh x = log (x + sqrt (1.0+x*x))
acosh x = log (x + (x+1.0) * sqrt ((x1.0)/(x+1.0)))
atanh x = 0.5 * log ((1.0+x) / (1.0x))
type instance ElemRep DoubleX2 = 'DoubleRep
type instance ElemPrim DoubleX2 = Double#
instance PrimBytes DoubleX2 where
toBytes (DoubleX2# a1 a2) = case runRW#
( \s0 -> case newByteArray# (SIZEOF_HSDOUBLE# *# 2#) s0 of
(# s1, marr #) -> case writeDoubleArray# marr 0# a1 s1 of
s2 -> case writeDoubleArray# marr 1# a2 s2 of
s3 -> unsafeFreezeByteArray# marr s3
) of (# _, a #) -> (# 0#, 2#, a #)
fromBytes (# off, _, arr #) = DoubleX2#
(indexDoubleArray# arr off)
(indexDoubleArray# arr (off +# 1#))
byteSize _ = SIZEOF_HSDOUBLE# *# 2#
byteAlign _ = ALIGNMENT_HSDOUBLE#
elementByteSize _ = SIZEOF_HSDOUBLE#
ix 0# (DoubleX2# a1 _) = a1
ix 1# (DoubleX2# _ a2) = a2
ix _ _ = undefined
instance ElementWise (Idx '[2]) Double DoubleX2 where
indexOffset# (DoubleX2# a1 _) 0# = D# a1
indexOffset# (DoubleX2# _ a2) 1# = D# a2
indexOffset# _ _ = undefined
(!) (DoubleX2# a1 _) ( 1 :! Z) = D# a1
(!) (DoubleX2# _ a2) ( 2 :! Z) = D# a2
(!) _ ( _ :! Z) = undefined
broadcast (D# x) = DoubleX2# x x
ewmap f (DoubleX2# x y) = case (f (1:!Z) (D# x), f (2:!Z) (D# y)) of
(D# r1, D# r2) -> DoubleX2# r1 r2
ewgen f = case (f (1:!Z), f (2:!Z)) of (D# r1, D# r2) -> DoubleX2# r1 r2
ewgenA f = (\(D# r1) (D# r2) -> DoubleX2# r1 r2) <$> f (1:!Z) <*> f (2:!Z)
ewfoldl f x0 (DoubleX2# x y) = f (2:!Z) (f (1:!Z) x0 (D# x)) (D# y)
ewfoldr f x0 (DoubleX2# x y) = f (1:!Z) (D# x) (f (2:!Z) (D# y) x0)
elementWise f (DoubleX2# x y) = (\(D# a) (D# b) -> DoubleX2# a b)
<$> f (D# x) <*> f (D# y)
indexWise f (DoubleX2# x y) = (\(D# a) (D# b) -> DoubleX2# a b)
<$> f (1:!Z) (D# x) <*> f (2:!Z) (D# y)
update (1 :! Z) (D# q) (DoubleX2# _ y) = DoubleX2# q y
update (2 :! Z) (D# q) (DoubleX2# x _) = DoubleX2# x q
update (_ :! Z) _ x = x