module Numeric.Array.Family.FloatX2 () where
#include "MachDeps.h"
import GHC.Base (runRW#)
import GHC.Prim
import GHC.Types (Float (..), RuntimeRep (..),
isTrue#)
import Numeric.Array.ElementWise
import Numeric.Array.Family
import Numeric.Commons
import Numeric.Dimensions
instance Bounded FloatX2 where
maxBound = case infty of F# x -> FloatX2# x x
minBound = case negate infty of F# x -> FloatX2# x x
infty :: Float
infty = read "Infinity"
instance Show FloatX2 where
show (FloatX2# a1 a2) = "{ " ++ show (F# a1)
++ ", " ++ show (F# a2)
++ " }"
instance Eq FloatX2 where
FloatX2# a1 a2 == FloatX2# b1 b2 = isTrue# ( (a1 `eqFloat#` b1)
`andI#` (a2 `eqFloat#` b2)
)
FloatX2# a1 a2 /= FloatX2# b1 b2 = isTrue# ( (a1 `neFloat#` b1)
`orI#` (a2 `neFloat#` b2)
)
instance Ord FloatX2 where
FloatX2# a1 a2 > FloatX2# b1 b2 = isTrue# ( (a1 `gtFloat#` b1)
`andI#` (a2 `gtFloat#` b2)
)
FloatX2# a1 a2 < FloatX2# b1 b2 = isTrue# ( (a1 `ltFloat#` b1)
`andI#` (a2 `ltFloat#` b2)
)
FloatX2# a1 a2 >= FloatX2# b1 b2 = isTrue# ( (a1 `geFloat#` b1)
`andI#` (a2 `geFloat#` b2)
)
FloatX2# a1 a2 <= FloatX2# b1 b2 = isTrue# ( (a1 `leFloat#` b1)
`andI#` (a2 `leFloat#` b2)
)
compare (FloatX2# a1 a2) (FloatX2# b1 b2)
| isTrue# (a1 `gtFloat#` b1) = GT
| isTrue# (a1 `ltFloat#` b1) = LT
| isTrue# (a2 `gtFloat#` b2) = GT
| isTrue# (a2 `ltFloat#` b2) = LT
| otherwise = EQ
min (FloatX2# a1 a2) (FloatX2# b1 b2) =
FloatX2# (if isTrue# (a1 `gtFloat#` b1) then b1 else a1)
(if isTrue# (a2 `gtFloat#` b2) then b2 else a2)
max (FloatX2# a1 a2) (FloatX2# b1 b2) =
FloatX2# (if isTrue# (a1 `gtFloat#` b1) then a1 else b1)
(if isTrue# (a2 `gtFloat#` b2) then a2 else b2)
instance Num FloatX2 where
FloatX2# a1 a2 + FloatX2# b1 b2
= FloatX2# (plusFloat# a1 b1) (plusFloat# a2 b2)
FloatX2# a1 a2 FloatX2# b1 b2
= FloatX2# (minusFloat# a1 b1) (minusFloat# a2 b2)
FloatX2# a1 a2 * FloatX2# b1 b2
= FloatX2# (timesFloat# a1 b1) (timesFloat# a2 b2)
negate (FloatX2# a1 a2)
= FloatX2# (negateFloat# a1) (negateFloat# a2)
abs (FloatX2# a1 a2)
= FloatX2# (if isTrue# (a1 `geFloat#` 0.0#) then a1 else negateFloat# a1)
(if isTrue# (a2 `geFloat#` 0.0#) then a2 else negateFloat# a2)
signum (FloatX2# a1 a2)
= FloatX2# (if isTrue# (a1 `gtFloat#` 0.0#)
then 1.0#
else if isTrue# (a1 `ltFloat#` 0.0#) then 1.0# else 0.0# )
(if isTrue# (a2 `gtFloat#` 0.0#)
then 1.0#
else if isTrue# (a2 `ltFloat#` 0.0#) then 1.0# else 0.0# )
fromInteger n = case fromInteger n of F# x -> FloatX2# x x
instance Fractional FloatX2 where
FloatX2# a1 a2 / FloatX2# b1 b2 = FloatX2# (divideFloat# a1 b1)
(divideFloat# a2 b2)
recip (FloatX2# a1 a2) = FloatX2# (divideFloat# 1.0# a1)
(divideFloat# 1.0# a2)
fromRational r = case fromRational r of F# x -> FloatX2# x x
instance Floating FloatX2 where
pi = FloatX2# 3.141592653589793238# 3.141592653589793238#
exp (FloatX2# a1 a2) = FloatX2# (expFloat# a1)
(expFloat# a2)
log (FloatX2# a1 a2) = FloatX2# (logFloat# a1)
(logFloat# a2)
sqrt (FloatX2# a1 a2) = FloatX2# (sqrtFloat# a1)
(sqrtFloat# a2)
sin (FloatX2# a1 a2) = FloatX2# (sinFloat# a1)
(sinFloat# a2)
cos (FloatX2# a1 a2) = FloatX2# (cosFloat# a1)
(cosFloat# a2)
tan (FloatX2# a1 a2) = FloatX2# (tanFloat# a1)
(tanFloat# a2)
asin (FloatX2# a1 a2) = FloatX2# (asinFloat# a1)
(asinFloat# a2)
acos (FloatX2# a1 a2) = FloatX2# (acosFloat# a1)
(acosFloat# a2)
atan (FloatX2# a1 a2) = FloatX2# (atanFloat# a1)
(atanFloat# a2)
sinh (FloatX2# a1 a2) = FloatX2# (sinFloat# a1)
(sinFloat# a2)
cosh (FloatX2# a1 a2) = FloatX2# (coshFloat# a1)
(coshFloat# a2)
tanh (FloatX2# a1 a2) = FloatX2# (tanhFloat# a1)
(tanhFloat# a2)
FloatX2# a1 a2 ** FloatX2# b1 b2 = FloatX2# (powerFloat# a1 b1)
(powerFloat# a2 b2)
logBase x y = log y / log x
asinh x = log (x + sqrt (1.0+x*x))
acosh x = log (x + (x+1.0) * sqrt ((x1.0)/(x+1.0)))
atanh x = 0.5 * log ((1.0+x) / (1.0x))
type instance ElemRep FloatX2 = 'FloatRep
type instance ElemPrim FloatX2 = Float#
instance PrimBytes FloatX2 where
toBytes (FloatX2# a1 a2) = case runRW#
( \s0 -> case newByteArray# (SIZEOF_HSFLOAT# *# 2#) s0 of
(# s1, marr #) -> case writeFloatArray# marr 0# a1 s1 of
s2 -> case writeFloatArray# marr 1# a2 s2 of
s3 -> unsafeFreezeByteArray# marr s3
) of (# _, a #) -> (# 0#, 2#, a #)
fromBytes (# off, _, arr #) = FloatX2#
(indexFloatArray# arr off)
(indexFloatArray# arr (off +# 1#))
byteSize _ = SIZEOF_HSFLOAT# *# 2#
byteAlign _ = ALIGNMENT_HSFLOAT#
elementByteSize _ = SIZEOF_HSFLOAT#
ix 0# (FloatX2# a1 _) = a1
ix 1# (FloatX2# _ a2) = a2
ix _ _ = undefined
instance ElementWise (Idx '[2]) Float FloatX2 where
indexOffset# (FloatX2# a1 _) 0# = F# a1
indexOffset# (FloatX2# _ a2) 1# = F# a2
indexOffset# _ _ = undefined
(!) (FloatX2# a1 _) ( 1 :! Z) = F# a1
(!) (FloatX2# _ a2) ( 2 :! Z) = F# a2
(!) _ ( _ :! Z) = undefined
broadcast (F# x) = FloatX2# x x
ewmap f (FloatX2# x y) = case (f (1:!Z) (F# x), f (2:!Z) (F# y)) of
(F# r1, F# r2) -> FloatX2# r1 r2
ewgen f = case (f (1:!Z), f (2:!Z)) of (F# r1, F# r2) -> FloatX2# r1 r2
ewgenA f = (\(F# r1) (F# r2) -> FloatX2# r1 r2) <$> f (1:!Z) <*> f (2:!Z)
ewfoldl f x0 (FloatX2# x y) = f (2:!Z) (f (1:!Z) x0 (F# x)) (F# y)
ewfoldr f x0 (FloatX2# x y) = f (1:!Z) (F# x) (f (2:!Z) (F# y) x0)
elementWise f (FloatX2# x y) = (\(F# a) (F# b) -> FloatX2# a b)
<$> f (F# x) <*> f (F# y)
indexWise f (FloatX2# x y) = (\(F# a) (F# b) -> FloatX2# a b)
<$> f (1:!Z) (F# x) <*> f (2:!Z) (F# y)
update (1 :! Z) (F# q) (FloatX2# _ y) = FloatX2# q y
update (2 :! Z) (F# q) (FloatX2# x _) = FloatX2# x q
update (_ :! Z) _ x = x