module Numeric.Array.Family.FloatX3 () where
#include "MachDeps.h"
import GHC.Base (runRW#)
import GHC.Prim
import GHC.Types (Float (..), RuntimeRep (..),
isTrue#)
import Numeric.Array.ElementWise
import Numeric.Array.Family
import Numeric.Commons
import Numeric.Dimensions
instance Bounded FloatX3 where
maxBound = case infty of F# x -> FloatX3# x x x
minBound = case negate infty of F# x -> FloatX3# x x x
infty :: Float
infty = read "Infinity"
instance Show FloatX3 where
show (FloatX3# a1 a2 a3) = "{ " ++ show (F# a1)
++ ", " ++ show (F# a2)
++ ", " ++ show (F# a3)
++ " }"
instance Eq FloatX3 where
FloatX3# a1 a2 a3 == FloatX3# b1 b2 b3 = isTrue# ( (a1 `eqFloat#` b1)
`andI#` (a2 `eqFloat#` b2)
`andI#` (a3 `eqFloat#` b3)
)
FloatX3# a1 a2 a3 /= FloatX3# b1 b2 b3 = isTrue# ( (a1 `neFloat#` b1)
`orI#` (a2 `neFloat#` b2)
`orI#` (a3 `neFloat#` b3)
)
instance Ord FloatX3 where
FloatX3# a1 a2 a3 > FloatX3# b1 b2 b3 = isTrue# ( (a1 `gtFloat#` b1)
`andI#` (a2 `gtFloat#` b2)
`andI#` (a3 `gtFloat#` b3)
)
FloatX3# a1 a2 a3 < FloatX3# b1 b2 b3 = isTrue# ( (a1 `ltFloat#` b1)
`andI#` (a2 `ltFloat#` b2)
`andI#` (a3 `ltFloat#` b3)
)
FloatX3# a1 a2 a3 >= FloatX3# b1 b2 b3 = isTrue# ( (a1 `geFloat#` b1)
`andI#` (a2 `geFloat#` b2)
`andI#` (a3 `geFloat#` b3)
)
FloatX3# a1 a2 a3 <= FloatX3# b1 b2 b3 = isTrue# ( (a1 `leFloat#` b1)
`andI#` (a2 `leFloat#` b2)
`andI#` (a3 `leFloat#` b3)
)
compare (FloatX3# a1 a2 a3) (FloatX3# b1 b2 b3)
| isTrue# (a1 `gtFloat#` b1) = GT
| isTrue# (a1 `ltFloat#` b1) = LT
| isTrue# (a2 `gtFloat#` b2) = GT
| isTrue# (a2 `ltFloat#` b2) = LT
| isTrue# (a3 `gtFloat#` b3) = GT
| isTrue# (a3 `ltFloat#` b3) = LT
| otherwise = EQ
min (FloatX3# a1 a2 a3) (FloatX3# b1 b2 b3) =
FloatX3# (if isTrue# (a1 `gtFloat#` b1) then b1 else a1)
(if isTrue# (a2 `gtFloat#` b2) then b2 else a2)
(if isTrue# (a3 `gtFloat#` b3) then b3 else a3)
max (FloatX3# a1 a2 a3) (FloatX3# b1 b2 b3) =
FloatX3# (if isTrue# (a1 `gtFloat#` b1) then a1 else b1)
(if isTrue# (a2 `gtFloat#` b2) then a2 else b2)
(if isTrue# (a3 `gtFloat#` b3) then a3 else b3)
instance Num FloatX3 where
FloatX3# a1 a2 a3 + FloatX3# b1 b2 b3
= FloatX3# (plusFloat# a1 b1) (plusFloat# a2 b2) (plusFloat# a3 b3)
FloatX3# a1 a2 a3 FloatX3# b1 b2 b3
= FloatX3# (minusFloat# a1 b1) (minusFloat# a2 b2) (minusFloat# a3 b3)
FloatX3# a1 a2 a3 * FloatX3# b1 b2 b3
= FloatX3# (timesFloat# a1 b1) (timesFloat# a2 b2) (timesFloat# a3 b3)
negate (FloatX3# a1 a2 a3)
= FloatX3# (negateFloat# a1) (negateFloat# a2) (negateFloat# a3)
abs (FloatX3# a1 a2 a3)
= FloatX3# (if isTrue# (a1 `geFloat#` 0.0#) then a1 else negateFloat# a1)
(if isTrue# (a2 `geFloat#` 0.0#) then a2 else negateFloat# a2)
(if isTrue# (a3 `geFloat#` 0.0#) then a3 else negateFloat# a3)
signum (FloatX3# a1 a2 a3)
= FloatX3# (if isTrue# (a1 `gtFloat#` 0.0#)
then 1.0#
else if isTrue# (a1 `ltFloat#` 0.0#) then 1.0# else 0.0# )
(if isTrue# (a2 `gtFloat#` 0.0#)
then 1.0#
else if isTrue# (a2 `ltFloat#` 0.0#) then 1.0# else 0.0# )
(if isTrue# (a3 `gtFloat#` 0.0#)
then 1.0#
else if isTrue# (a3 `ltFloat#` 0.0#) then 1.0# else 0.0# )
fromInteger n = case fromInteger n of F# x -> FloatX3# x x x
instance Fractional FloatX3 where
FloatX3# a1 a2 a3 / FloatX3# b1 b2 b3 = FloatX3# (divideFloat# a1 b1)
(divideFloat# a2 b2)
(divideFloat# a3 b3)
recip (FloatX3# a1 a2 a3) = FloatX3# (divideFloat# 1.0# a1)
(divideFloat# 1.0# a2)
(divideFloat# 1.0# a3)
fromRational r = case fromRational r of F# x -> FloatX3# x x x
instance Floating FloatX3 where
pi = FloatX3# 3.141592653589793238# 3.141592653589793238# 3.141592653589793238#
exp (FloatX3# a1 a2 a3) = FloatX3# (expFloat# a1)
(expFloat# a2)
(expFloat# a3)
log (FloatX3# a1 a2 a3) = FloatX3# (logFloat# a1)
(logFloat# a2)
(logFloat# a3)
sqrt (FloatX3# a1 a2 a3) = FloatX3# (sqrtFloat# a1)
(sqrtFloat# a2)
(sqrtFloat# a3)
sin (FloatX3# a1 a2 a3) = FloatX3# (sinFloat# a1)
(sinFloat# a2)
(sinFloat# a3)
cos (FloatX3# a1 a2 a3) = FloatX3# (cosFloat# a1)
(cosFloat# a2)
(cosFloat# a3)
tan (FloatX3# a1 a2 a3) = FloatX3# (tanFloat# a1)
(tanFloat# a2)
(tanFloat# a3)
asin (FloatX3# a1 a2 a3) = FloatX3# (asinFloat# a1)
(asinFloat# a2)
(asinFloat# a3)
acos (FloatX3# a1 a2 a3) = FloatX3# (acosFloat# a1)
(acosFloat# a2)
(acosFloat# a3)
atan (FloatX3# a1 a2 a3) = FloatX3# (atanFloat# a1)
(atanFloat# a2)
(atanFloat# a3)
sinh (FloatX3# a1 a2 a3) = FloatX3# (sinFloat# a1)
(sinFloat# a2)
(sinFloat# a3)
cosh (FloatX3# a1 a2 a3) = FloatX3# (coshFloat# a1)
(coshFloat# a2)
(coshFloat# a3)
tanh (FloatX3# a1 a2 a3) = FloatX3# (tanhFloat# a1)
(tanhFloat# a2)
(tanhFloat# a3)
FloatX3# a1 a2 a3 ** FloatX3# b1 b2 b3 = FloatX3# (powerFloat# a1 b1)
(powerFloat# a2 b2)
(powerFloat# a3 b3)
logBase x y = log y / log x
asinh x = log (x + sqrt (1.0+x*x))
acosh x = log (x + (x+1.0) * sqrt ((x1.0)/(x+1.0)))
atanh x = 0.5 * log ((1.0+x) / (1.0x))
type instance ElemRep FloatX3 = 'FloatRep
type instance ElemPrim FloatX3 = Float#
instance PrimBytes FloatX3 where
toBytes (FloatX3# a1 a2 a3) = case runRW#
( \s0 -> case newByteArray# (SIZEOF_HSFLOAT# *# 3#) s0 of
(# s1, marr #) -> case writeFloatArray# marr 0# a1 s1 of
s2 -> case writeFloatArray# marr 1# a2 s2 of
s3 -> case writeFloatArray# marr 2# a3 s3 of
s4 -> unsafeFreezeByteArray# marr s4
) of (# _, a #) -> (# 0#, 3#, a #)
fromBytes (# off, _, arr #) = FloatX3#
(indexFloatArray# arr off)
(indexFloatArray# arr (off +# 1#))
(indexFloatArray# arr (off +# 2#))
byteSize _ = SIZEOF_HSFLOAT# *# 3#
byteAlign _ = ALIGNMENT_HSFLOAT#
elementByteSize _ = SIZEOF_HSFLOAT#
ix 0# (FloatX3# a1 _ _) = a1
ix 1# (FloatX3# _ a2 _) = a2
ix 2# (FloatX3# _ _ a3) = a3
ix _ _ = undefined
instance ElementWise (Idx '[3]) Float FloatX3 where
indexOffset# (FloatX3# a1 _ _) 0# = F# a1
indexOffset# (FloatX3# _ a2 _) 1# = F# a2
indexOffset# (FloatX3# _ _ a3) 2# = F# a3
indexOffset# _ _ = undefined
(!) (FloatX3# a1 _ _) ( 1 :! Z) = F# a1
(!) (FloatX3# _ a2 _) ( 2 :! Z) = F# a2
(!) (FloatX3# _ _ a3) ( 3 :! Z) = F# a3
(!) _ ( _ :! Z) = undefined
broadcast (F# x) = FloatX3# x x x
ewmap f (FloatX3# x y z) = case (f (1:!Z) (F# x), f (2:!Z) (F# y), f (3:!Z) (F# z)) of
(F# r1, F# r2, F# r3) -> FloatX3# r1 r2 r3
ewgen f = case (f (1:!Z), f (2:!Z), f (3:!Z)) of (F# r1, F# r2, F# r3) -> FloatX3# r1 r2 r3
ewgenA f = (\(F# r1) (F# r2) (F# r3) -> FloatX3# r1 r2 r3)
<$> f (1:!Z) <*> f (2:!Z) <*> f (3:!Z)
ewfoldl f x0 (FloatX3# x y z) = f (3:!Z) (f (2:!Z) (f (1:!Z) x0 (F# x)) (F# y)) (F# z)
ewfoldr f x0 (FloatX3# x y z) = f (1:!Z) (F# x) (f (2:!Z) (F# y) (f (3:!Z) (F# z) x0))
elementWise f (FloatX3# x y z) = (\(F# a) (F# b) (F# c) -> FloatX3# a b c)
<$> f (F# x) <*> f (F# y) <*> f (F# z)
indexWise f (FloatX3# x y z) = (\(F# a) (F# b) (F# c) -> FloatX3# a b c)
<$> f (1:!Z) (F# x) <*> f (2:!Z) (F# y) <*> f (3:!Z) (F# z)
update (1 :! Z) (F# q) (FloatX3# _ y z) = FloatX3# q y z
update (2 :! Z) (F# q) (FloatX3# x _ z) = FloatX3# x q z
update (3 :! Z) (F# q) (FloatX3# x y _) = FloatX3# x y q
update (_ :! Z) _ x = x