{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE UnboxedSums #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE UndecidableInstances #-} module Numeric.DataFrame.Internal.Backend.Family.FloatX3 (FloatX3 (..)) where import GHC.Base import Numeric.DataFrame.Internal.PrimArray import Numeric.PrimBytes import Numeric.ProductOrd import qualified Numeric.ProductOrd.NonTransitive as NonTransitive import qualified Numeric.ProductOrd.Partial as Partial data FloatX3 = FloatX3# Float# Float# Float# -- | Since @Bounded@ is not implemented for floating point types, this instance -- has an unresolvable constraint. -- Nevetheless, it is good to have it here for nicer error messages. instance Bounded Float => Bounded FloatX3 where maxBound = case maxBound of F# x -> FloatX3# x x x minBound = case minBound of F# x -> FloatX3# x x x instance Eq FloatX3 where FloatX3# a1 a2 a3 == FloatX3# b1 b2 b3 = isTrue# ( (a1 `eqFloat#` b1) `andI#` (a2 `eqFloat#` b2) `andI#` (a3 `eqFloat#` b3) ) {-# INLINE (==) #-} FloatX3# a1 a2 a3 /= FloatX3# b1 b2 b3 = isTrue# ( (a1 `neFloat#` b1) `orI#` (a2 `neFloat#` b2) `orI#` (a3 `neFloat#` b3) ) {-# INLINE (/=) #-} cmp' :: Float# -> Float# -> PartialOrdering cmp' a b | isTrue# (a `gtFloat#` b) = PGT | isTrue# (a `ltFloat#` b) = PLT | otherwise = PEQ instance ProductOrder FloatX3 where cmp (FloatX3# a1 a2 a3) (FloatX3# b1 b2 b3) = cmp' a1 b1 <> cmp' a2 b2 <> cmp' a3 b3 {-# INLINE cmp #-} instance Ord (NonTransitive.ProductOrd FloatX3) where NonTransitive.ProductOrd x > NonTransitive.ProductOrd y = cmp x y == PGT {-# INLINE (>) #-} NonTransitive.ProductOrd x < NonTransitive.ProductOrd y = cmp x y == PLT {-# INLINE (<) #-} (>=) (NonTransitive.ProductOrd (FloatX3# a1 a2 a3)) (NonTransitive.ProductOrd (FloatX3# b1 b2 b3)) = isTrue# ((a1 `geFloat#` b1) `andI#` (a2 `geFloat#` b2) `andI#` (a3 `geFloat#` b3)) {-# INLINE (>=) #-} (<=) (NonTransitive.ProductOrd (FloatX3# a1 a2 a3)) (NonTransitive.ProductOrd (FloatX3# b1 b2 b3)) = isTrue# ((a1 `leFloat#` b1) `andI#` (a2 `leFloat#` b2) `andI#` (a3 `leFloat#` b3)) {-# INLINE (<=) #-} compare (NonTransitive.ProductOrd a) (NonTransitive.ProductOrd b) = NonTransitive.toOrdering $ cmp a b {-# INLINE compare #-} min (NonTransitive.ProductOrd (FloatX3# a1 a2 a3)) (NonTransitive.ProductOrd (FloatX3# b1 b2 b3)) = NonTransitive.ProductOrd ( FloatX3# (if isTrue# (a1 `gtFloat#` b1) then b1 else a1) (if isTrue# (a2 `gtFloat#` b2) then b2 else a2) (if isTrue# (a3 `gtFloat#` b3) then b3 else a3) ) {-# INLINE min #-} max (NonTransitive.ProductOrd (FloatX3# a1 a2 a3)) (NonTransitive.ProductOrd (FloatX3# b1 b2 b3)) = NonTransitive.ProductOrd ( FloatX3# (if isTrue# (a1 `ltFloat#` b1) then b1 else a1) (if isTrue# (a2 `ltFloat#` b2) then b2 else a2) (if isTrue# (a3 `ltFloat#` b3) then b3 else a3) ) {-# INLINE max #-} instance Ord (Partial.ProductOrd FloatX3) where Partial.ProductOrd x > Partial.ProductOrd y = cmp x y == PGT {-# INLINE (>) #-} Partial.ProductOrd x < Partial.ProductOrd y = cmp x y == PLT {-# INLINE (<) #-} (>=) (Partial.ProductOrd (FloatX3# a1 a2 a3)) (Partial.ProductOrd (FloatX3# b1 b2 b3)) = isTrue# ((a1 `geFloat#` b1) `andI#` (a2 `geFloat#` b2) `andI#` (a3 `geFloat#` b3)) {-# INLINE (>=) #-} (<=) (Partial.ProductOrd (FloatX3# a1 a2 a3)) (Partial.ProductOrd (FloatX3# b1 b2 b3)) = isTrue# ((a1 `leFloat#` b1) `andI#` (a2 `leFloat#` b2) `andI#` (a3 `leFloat#` b3)) {-# INLINE (<=) #-} compare (Partial.ProductOrd a) (Partial.ProductOrd b) = Partial.toOrdering $ cmp a b {-# INLINE compare #-} min (Partial.ProductOrd (FloatX3# a1 a2 a3)) (Partial.ProductOrd (FloatX3# b1 b2 b3)) = Partial.ProductOrd ( FloatX3# (if isTrue# (a1 `gtFloat#` b1) then b1 else a1) (if isTrue# (a2 `gtFloat#` b2) then b2 else a2) (if isTrue# (a3 `gtFloat#` b3) then b3 else a3) ) {-# INLINE min #-} max (Partial.ProductOrd (FloatX3# a1 a2 a3)) (Partial.ProductOrd (FloatX3# b1 b2 b3)) = Partial.ProductOrd ( FloatX3# (if isTrue# (a1 `ltFloat#` b1) then b1 else a1) (if isTrue# (a2 `ltFloat#` b2) then b2 else a2) (if isTrue# (a3 `ltFloat#` b3) then b3 else a3) ) {-# INLINE max #-} instance Ord FloatX3 where FloatX3# a1 a2 a3 > FloatX3# b1 b2 b3 | isTrue# (a1 `gtFloat#` b1) = True | isTrue# (a1 `ltFloat#` b1) = False | isTrue# (a2 `gtFloat#` b2) = True | isTrue# (a2 `ltFloat#` b2) = False | isTrue# (a3 `gtFloat#` b3) = True | otherwise = False {-# INLINE (>) #-} FloatX3# a1 a2 a3 < FloatX3# b1 b2 b3 | isTrue# (a1 `ltFloat#` b1) = True | isTrue# (a1 `gtFloat#` b1) = False | isTrue# (a2 `ltFloat#` b2) = True | isTrue# (a2 `gtFloat#` b2) = False | isTrue# (a3 `ltFloat#` b3) = True | otherwise = False {-# INLINE (<) #-} FloatX3# a1 a2 a3 >= FloatX3# b1 b2 b3 | isTrue# (a1 `ltFloat#` b1) = False | isTrue# (a1 `gtFloat#` b1) = True | isTrue# (a2 `ltFloat#` b2) = False | isTrue# (a2 `gtFloat#` b2) = True | isTrue# (a3 `ltFloat#` b3) = False | otherwise = True {-# INLINE (>=) #-} FloatX3# a1 a2 a3 <= FloatX3# b1 b2 b3 | isTrue# (a1 `gtFloat#` b1) = False | isTrue# (a1 `ltFloat#` b1) = True | isTrue# (a2 `gtFloat#` b2) = False | isTrue# (a2 `ltFloat#` b2) = True | isTrue# (a3 `gtFloat#` b3) = False | otherwise = True {-# INLINE (<=) #-} compare (FloatX3# a1 a2 a3) (FloatX3# b1 b2 b3) | isTrue# (a1 `gtFloat#` b1) = GT | isTrue# (a1 `ltFloat#` b1) = LT | isTrue# (a2 `gtFloat#` b2) = GT | isTrue# (a2 `ltFloat#` b2) = LT | isTrue# (a3 `gtFloat#` b3) = GT | isTrue# (a3 `ltFloat#` b3) = LT | otherwise = EQ {-# INLINE compare #-} -- | element-wise operations for vectors instance Num FloatX3 where FloatX3# a1 a2 a3 + FloatX3# b1 b2 b3 = FloatX3# (plusFloat# a1 b1) (plusFloat# a2 b2) (plusFloat# a3 b3) {-# INLINE (+) #-} FloatX3# a1 a2 a3 - FloatX3# b1 b2 b3 = FloatX3# (minusFloat# a1 b1) (minusFloat# a2 b2) (minusFloat# a3 b3) {-# INLINE (-) #-} FloatX3# a1 a2 a3 * FloatX3# b1 b2 b3 = FloatX3# (timesFloat# a1 b1) (timesFloat# a2 b2) (timesFloat# a3 b3) {-# INLINE (*) #-} negate (FloatX3# a1 a2 a3) = FloatX3# (negateFloat# a1) (negateFloat# a2) (negateFloat# a3) {-# INLINE negate #-} abs (FloatX3# a1 a2 a3) = FloatX3# (if isTrue# (a1 `geFloat#` 0.0#) then a1 else negateFloat# a1) (if isTrue# (a2 `geFloat#` 0.0#) then a2 else negateFloat# a2) (if isTrue# (a3 `geFloat#` 0.0#) then a3 else negateFloat# a3) {-# INLINE abs #-} signum (FloatX3# a1 a2 a3) = FloatX3# (if isTrue# (a1 `gtFloat#` 0.0#) then 1.0# else if isTrue# (a1 `ltFloat#` 0.0#) then -1.0# else 0.0# ) (if isTrue# (a2 `gtFloat#` 0.0#) then 1.0# else if isTrue# (a2 `ltFloat#` 0.0#) then -1.0# else 0.0# ) (if isTrue# (a3 `gtFloat#` 0.0#) then 1.0# else if isTrue# (a3 `ltFloat#` 0.0#) then -1.0# else 0.0# ) {-# INLINE signum #-} fromInteger n = case fromInteger n of F# x -> FloatX3# x x x {-# INLINE fromInteger #-} instance Fractional FloatX3 where FloatX3# a1 a2 a3 / FloatX3# b1 b2 b3 = FloatX3# (divideFloat# a1 b1) (divideFloat# a2 b2) (divideFloat# a3 b3) {-# INLINE (/) #-} recip (FloatX3# a1 a2 a3) = FloatX3# (divideFloat# 1.0# a1) (divideFloat# 1.0# a2) (divideFloat# 1.0# a3) {-# INLINE recip #-} fromRational r = case fromRational r of F# x -> FloatX3# x x x {-# INLINE fromRational #-} instance Floating FloatX3 where pi = FloatX3# 3.141592653589793238# 3.141592653589793238# 3.141592653589793238# {-# INLINE pi #-} exp (FloatX3# a1 a2 a3) = FloatX3# (expFloat# a1) (expFloat# a2) (expFloat# a3) {-# INLINE exp #-} log (FloatX3# a1 a2 a3) = FloatX3# (logFloat# a1) (logFloat# a2) (logFloat# a3) {-# INLINE log #-} sqrt (FloatX3# a1 a2 a3) = FloatX3# (sqrtFloat# a1) (sqrtFloat# a2) (sqrtFloat# a3) {-# INLINE sqrt #-} sin (FloatX3# a1 a2 a3) = FloatX3# (sinFloat# a1) (sinFloat# a2) (sinFloat# a3) {-# INLINE sin #-} cos (FloatX3# a1 a2 a3) = FloatX3# (cosFloat# a1) (cosFloat# a2) (cosFloat# a3) {-# INLINE cos #-} tan (FloatX3# a1 a2 a3) = FloatX3# (tanFloat# a1) (tanFloat# a2) (tanFloat# a3) {-# INLINE tan #-} asin (FloatX3# a1 a2 a3) = FloatX3# (asinFloat# a1) (asinFloat# a2) (asinFloat# a3) {-# INLINE asin #-} acos (FloatX3# a1 a2 a3) = FloatX3# (acosFloat# a1) (acosFloat# a2) (acosFloat# a3) {-# INLINE acos #-} atan (FloatX3# a1 a2 a3) = FloatX3# (atanFloat# a1) (atanFloat# a2) (atanFloat# a3) {-# INLINE atan #-} sinh (FloatX3# a1 a2 a3) = FloatX3# (sinhFloat# a1) (sinhFloat# a2) (sinhFloat# a3) {-# INLINE sinh #-} cosh (FloatX3# a1 a2 a3) = FloatX3# (coshFloat# a1) (coshFloat# a2) (coshFloat# a3) {-# INLINE cosh #-} tanh (FloatX3# a1 a2 a3) = FloatX3# (tanhFloat# a1) (tanhFloat# a2) (tanhFloat# a3) {-# INLINE tanh #-} FloatX3# a1 a2 a3 ** FloatX3# b1 b2 b3 = FloatX3# (powerFloat# a1 b1) (powerFloat# a2 b2) (powerFloat# a3 b3) {-# INLINE (**) #-} logBase x y = log y / log x {-# INLINE logBase #-} asinh x = log (x + sqrt (1.0+x*x)) {-# INLINE asinh #-} acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) {-# INLINE acosh #-} atanh x = 0.5 * log ((1.0+x) / (1.0-x)) {-# INLINE atanh #-} -- offset in bytes is S times bigger than offset in prim elements, -- when S is power of two, this is equal to shift #define BOFF_TO_PRIMOFF(off) uncheckedIShiftRL# off 2# #define ELEM_N 3 instance PrimBytes FloatX3 where getBytes (FloatX3# a1 a2 a3) = case runRW# ( \s0 -> case newByteArray# (byteSize @FloatX3 undefined) s0 of (# s1, marr #) -> case writeFloatArray# marr 0# a1 s1 of s2 -> case writeFloatArray# marr 1# a2 s2 of s3 -> case writeFloatArray# marr 2# a3 s3 of s4 -> unsafeFreezeByteArray# marr s4 ) of (# _, a #) -> a {-# INLINE getBytes #-} fromBytes off arr | i <- BOFF_TO_PRIMOFF(off) = FloatX3# (indexFloatArray# arr i) (indexFloatArray# arr (i +# 1#)) (indexFloatArray# arr (i +# 2#)) {-# INLINE fromBytes #-} readBytes mba off s0 | i <- BOFF_TO_PRIMOFF(off) = case readFloatArray# mba i s0 of (# s1, a1 #) -> case readFloatArray# mba (i +# 1#) s1 of (# s2, a2 #) -> case readFloatArray# mba (i +# 2#) s2 of (# s3, a3 #) -> (# s3, FloatX3# a1 a2 a3 #) {-# INLINE readBytes #-} writeBytes mba off (FloatX3# a1 a2 a3) s | i <- BOFF_TO_PRIMOFF(off) = writeFloatArray# mba (i +# 2#) a3 ( writeFloatArray# mba (i +# 1#) a2 ( writeFloatArray# mba i a1 s )) {-# INLINE writeBytes #-} readAddr addr s0 = case readFloatOffAddr# addr 0# s0 of (# s1, a1 #) -> case readFloatOffAddr# addr 1# s1 of (# s2, a2 #) -> case readFloatOffAddr# addr 2# s2 of (# s3, a3 #) -> (# s3, FloatX3# a1 a2 a3 #) {-# INLINE readAddr #-} writeAddr (FloatX3# a1 a2 a3) addr s = writeFloatOffAddr# addr 2# a3 ( writeFloatOffAddr# addr 1# a2 ( writeFloatOffAddr# addr 0# a1 s )) {-# INLINE writeAddr #-} byteSize _ = byteSize @Float undefined *# ELEM_N# {-# INLINE byteSize #-} byteAlign _ = byteAlign @Float undefined {-# INLINE byteAlign #-} byteOffset _ = 0# {-# INLINE byteOffset #-} byteFieldOffset _ _ = negateInt# 1# {-# INLINE byteFieldOffset #-} indexArray ba off | i <- off *# ELEM_N# = FloatX3# (indexFloatArray# ba i) (indexFloatArray# ba (i +# 1#)) (indexFloatArray# ba (i +# 2#)) {-# INLINE indexArray #-} readArray mba off s0 | i <- off *# ELEM_N# = case readFloatArray# mba i s0 of (# s1, a1 #) -> case readFloatArray# mba (i +# 1#) s1 of (# s2, a2 #) -> case readFloatArray# mba (i +# 2#) s2 of (# s3, a3 #) -> (# s3, FloatX3# a1 a2 a3 #) {-# INLINE readArray #-} writeArray mba off (FloatX3# a1 a2 a3) s | i <- off *# ELEM_N# = writeFloatArray# mba (i +# 2#) a3 ( writeFloatArray# mba (i +# 1#) a2 ( writeFloatArray# mba i a1 s )) {-# INLINE writeArray #-} instance PrimArray Float FloatX3 where broadcast (F# x) = FloatX3# x x x {-# INLINE broadcast #-} ix# 0# (FloatX3# a1 _ _) = F# a1 ix# 1# (FloatX3# _ a2 _) = F# a2 ix# 2# (FloatX3# _ _ a3) = F# a3 ix# _ _ = undefined {-# INLINE ix# #-} gen# _ f s0 = case f s0 of (# s1, F# a1 #) -> case f s1 of (# s2, F# a2 #) -> case f s2 of (# s3, F# a3 #) -> (# s3, FloatX3# a1 a2 a3 #) upd# _ 0# (F# q) (FloatX3# _ y z) = FloatX3# q y z upd# _ 1# (F# q) (FloatX3# x _ z) = FloatX3# x q z upd# _ 2# (F# q) (FloatX3# x y _) = FloatX3# x y q upd# _ _ _ x = x {-# INLINE upd# #-} arrayContent# x = (# | (# CumulDims [ELEM_N, 1], 0#, getBytes x #) #) {-# INLINE arrayContent# #-} offsetElems _ = 0# {-# INLINE offsetElems #-} uniqueOrCumulDims _ = Right (CumulDims [ELEM_N, 1]) {-# INLINE uniqueOrCumulDims #-} fromElems _ off ba = FloatX3# (indexFloatArray# ba off) (indexFloatArray# ba (off +# 1#)) (indexFloatArray# ba (off +# 2#)) {-# INLINE fromElems #-}