{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE UndecidableInstances #-} module Numeric.DataFrame.Internal.Backend.Family.DoubleX3 (DoubleX3 (..)) where import GHC.Base import Numeric.DataFrame.Internal.PrimArray import Numeric.PrimBytes import Numeric.ProductOrd import qualified Numeric.ProductOrd.NonTransitive as NonTransitive import qualified Numeric.ProductOrd.Partial as Partial data DoubleX3 = DoubleX3# Double# Double# Double# -- | Since @Bounded@ is not implemented for floating point types, this instance -- has an unresolvable constraint. -- Nevetheless, it is good to have it here for nicer error messages. instance Bounded Double => Bounded DoubleX3 where maxBound = case maxBound of D# x -> DoubleX3# x x x minBound = case minBound of D# x -> DoubleX3# x x x instance Eq DoubleX3 where DoubleX3# a1 a2 a3 == DoubleX3# b1 b2 b3 = isTrue# ( (a1 ==## b1) `andI#` (a2 ==## b2) `andI#` (a3 ==## b3) ) {-# INLINE (==) #-} DoubleX3# a1 a2 a3 /= DoubleX3# b1 b2 b3 = isTrue# ( (a1 /=## b1) `orI#` (a2 /=## b2) `orI#` (a3 /=## b3) ) {-# INLINE (/=) #-} cmp' :: Double# -> Double# -> PartialOrdering cmp' a b | isTrue# (a >## b) = PGT | isTrue# (a <## b) = PLT | otherwise = PEQ instance ProductOrder DoubleX3 where cmp (DoubleX3# a1 a2 a3) (DoubleX3# b1 b2 b3) = cmp' a1 b1 <> cmp' a2 b2 <> cmp' a3 b3 {-# INLINE cmp #-} instance Ord (NonTransitive.ProductOrd DoubleX3) where NonTransitive.ProductOrd x > NonTransitive.ProductOrd y = cmp x y == PGT {-# INLINE (>) #-} NonTransitive.ProductOrd x < NonTransitive.ProductOrd y = cmp x y == PLT {-# INLINE (<) #-} (>=) (NonTransitive.ProductOrd (DoubleX3# a1 a2 a3)) (NonTransitive.ProductOrd (DoubleX3# b1 b2 b3)) = isTrue# ((a1 >=## b1) `andI#` (a2 >=## b2) `andI#` (a3 >=## b3)) {-# INLINE (>=) #-} (<=) (NonTransitive.ProductOrd (DoubleX3# a1 a2 a3)) (NonTransitive.ProductOrd (DoubleX3# b1 b2 b3)) = isTrue# ((a1 <=## b1) `andI#` (a2 <=## b2) `andI#` (a3 <=## b3)) {-# INLINE (<=) #-} compare (NonTransitive.ProductOrd a) (NonTransitive.ProductOrd b) = NonTransitive.toOrdering $ cmp a b {-# INLINE compare #-} min (NonTransitive.ProductOrd (DoubleX3# a1 a2 a3)) (NonTransitive.ProductOrd (DoubleX3# b1 b2 b3)) = NonTransitive.ProductOrd ( DoubleX3# (if isTrue# (a1 >## b1) then b1 else a1) (if isTrue# (a2 >## b2) then b2 else a2) (if isTrue# (a3 >## b3) then b3 else a3) ) {-# INLINE min #-} max (NonTransitive.ProductOrd (DoubleX3# a1 a2 a3)) (NonTransitive.ProductOrd (DoubleX3# b1 b2 b3)) = NonTransitive.ProductOrd ( DoubleX3# (if isTrue# (a1 <## b1) then b1 else a1) (if isTrue# (a2 <## b2) then b2 else a2) (if isTrue# (a3 <## b3) then b3 else a3) ) {-# INLINE max #-} instance Ord (Partial.ProductOrd DoubleX3) where Partial.ProductOrd x > Partial.ProductOrd y = cmp x y == PGT {-# INLINE (>) #-} Partial.ProductOrd x < Partial.ProductOrd y = cmp x y == PLT {-# INLINE (<) #-} (>=) (Partial.ProductOrd (DoubleX3# a1 a2 a3)) (Partial.ProductOrd (DoubleX3# b1 b2 b3)) = isTrue# ((a1 >=## b1) `andI#` (a2 >=## b2) `andI#` (a3 >=## b3)) {-# INLINE (>=) #-} (<=) (Partial.ProductOrd (DoubleX3# a1 a2 a3)) (Partial.ProductOrd (DoubleX3# b1 b2 b3)) = isTrue# ((a1 <=## b1) `andI#` (a2 <=## b2) `andI#` (a3 <=## b3)) {-# INLINE (<=) #-} compare (Partial.ProductOrd a) (Partial.ProductOrd b) = Partial.toOrdering $ cmp a b {-# INLINE compare #-} min (Partial.ProductOrd (DoubleX3# a1 a2 a3)) (Partial.ProductOrd (DoubleX3# b1 b2 b3)) = Partial.ProductOrd ( DoubleX3# (if isTrue# (a1 >## b1) then b1 else a1) (if isTrue# (a2 >## b2) then b2 else a2) (if isTrue# (a3 >## b3) then b3 else a3) ) {-# INLINE min #-} max (Partial.ProductOrd (DoubleX3# a1 a2 a3)) (Partial.ProductOrd (DoubleX3# b1 b2 b3)) = Partial.ProductOrd ( DoubleX3# (if isTrue# (a1 <## b1) then b1 else a1) (if isTrue# (a2 <## b2) then b2 else a2) (if isTrue# (a3 <## b3) then b3 else a3) ) {-# INLINE max #-} instance Ord DoubleX3 where DoubleX3# a1 a2 a3 > DoubleX3# b1 b2 b3 | isTrue# (a1 >## b1) = True | isTrue# (a1 <## b1) = False | isTrue# (a2 >## b2) = True | isTrue# (a2 <## b2) = False | isTrue# (a3 >## b3) = True | otherwise = False {-# INLINE (>) #-} DoubleX3# a1 a2 a3 < DoubleX3# b1 b2 b3 | isTrue# (a1 <## b1) = True | isTrue# (a1 >## b1) = False | isTrue# (a2 <## b2) = True | isTrue# (a2 >## b2) = False | isTrue# (a3 <## b3) = True | otherwise = False {-# INLINE (<) #-} DoubleX3# a1 a2 a3 >= DoubleX3# b1 b2 b3 | isTrue# (a1 <## b1) = False | isTrue# (a1 >## b1) = True | isTrue# (a2 <## b2) = False | isTrue# (a2 >## b2) = True | isTrue# (a3 <## b3) = False | otherwise = True {-# INLINE (>=) #-} DoubleX3# a1 a2 a3 <= DoubleX3# b1 b2 b3 | isTrue# (a1 >## b1) = False | isTrue# (a1 <## b1) = True | isTrue# (a2 >## b2) = False | isTrue# (a2 <## b2) = True | isTrue# (a3 >## b3) = False | otherwise = True {-# INLINE (<=) #-} compare (DoubleX3# a1 a2 a3) (DoubleX3# b1 b2 b3) | isTrue# (a1 >## b1) = GT | isTrue# (a1 <## b1) = LT | isTrue# (a2 >## b2) = GT | isTrue# (a2 <## b2) = LT | isTrue# (a3 >## b3) = GT | isTrue# (a3 <## b3) = LT | otherwise = EQ {-# INLINE compare #-} -- | element-wise operations for vectors instance Num DoubleX3 where DoubleX3# a1 a2 a3 + DoubleX3# b1 b2 b3 = DoubleX3# ((+##) a1 b1) ((+##) a2 b2) ((+##) a3 b3) {-# INLINE (+) #-} DoubleX3# a1 a2 a3 - DoubleX3# b1 b2 b3 = DoubleX3# ((-##) a1 b1) ((-##) a2 b2) ((-##) a3 b3) {-# INLINE (-) #-} DoubleX3# a1 a2 a3 * DoubleX3# b1 b2 b3 = DoubleX3# ((*##) a1 b1) ((*##) a2 b2) ((*##) a3 b3) {-# INLINE (*) #-} negate (DoubleX3# a1 a2 a3) = DoubleX3# (negateDouble# a1) (negateDouble# a2) (negateDouble# a3) {-# INLINE negate #-} abs (DoubleX3# a1 a2 a3) = DoubleX3# (if isTrue# (a1 >=## 0.0##) then a1 else negateDouble# a1) (if isTrue# (a2 >=## 0.0##) then a2 else negateDouble# a2) (if isTrue# (a3 >=## 0.0##) then a3 else negateDouble# a3) {-# INLINE abs #-} signum (DoubleX3# a1 a2 a3) = DoubleX3# (if isTrue# (a1 >## 0.0##) then 1.0## else if isTrue# (a1 <## 0.0##) then -1.0## else 0.0## ) (if isTrue# (a2 >## 0.0##) then 1.0## else if isTrue# (a2 <## 0.0##) then -1.0## else 0.0## ) (if isTrue# (a3 >## 0.0##) then 1.0## else if isTrue# (a3 <## 0.0##) then -1.0## else 0.0## ) {-# INLINE signum #-} fromInteger n = case fromInteger n of D# x -> DoubleX3# x x x {-# INLINE fromInteger #-} instance Fractional DoubleX3 where DoubleX3# a1 a2 a3 / DoubleX3# b1 b2 b3 = DoubleX3# ((/##) a1 b1) ((/##) a2 b2) ((/##) a3 b3) {-# INLINE (/) #-} recip (DoubleX3# a1 a2 a3) = DoubleX3# ((/##) 1.0## a1) ((/##) 1.0## a2) ((/##) 1.0## a3) {-# INLINE recip #-} fromRational r = case fromRational r of D# x -> DoubleX3# x x x {-# INLINE fromRational #-} instance Floating DoubleX3 where pi = DoubleX3# 3.141592653589793238## 3.141592653589793238## 3.141592653589793238## {-# INLINE pi #-} exp (DoubleX3# a1 a2 a3) = DoubleX3# (expDouble# a1) (expDouble# a2) (expDouble# a3) {-# INLINE exp #-} log (DoubleX3# a1 a2 a3) = DoubleX3# (logDouble# a1) (logDouble# a2) (logDouble# a3) {-# INLINE log #-} sqrt (DoubleX3# a1 a2 a3) = DoubleX3# (sqrtDouble# a1) (sqrtDouble# a2) (sqrtDouble# a3) {-# INLINE sqrt #-} sin (DoubleX3# a1 a2 a3) = DoubleX3# (sinDouble# a1) (sinDouble# a2) (sinDouble# a3) {-# INLINE sin #-} cos (DoubleX3# a1 a2 a3) = DoubleX3# (cosDouble# a1) (cosDouble# a2) (cosDouble# a3) {-# INLINE cos #-} tan (DoubleX3# a1 a2 a3) = DoubleX3# (tanDouble# a1) (tanDouble# a2) (tanDouble# a3) {-# INLINE tan #-} asin (DoubleX3# a1 a2 a3) = DoubleX3# (asinDouble# a1) (asinDouble# a2) (asinDouble# a3) {-# INLINE asin #-} acos (DoubleX3# a1 a2 a3) = DoubleX3# (acosDouble# a1) (acosDouble# a2) (acosDouble# a3) {-# INLINE acos #-} atan (DoubleX3# a1 a2 a3) = DoubleX3# (atanDouble# a1) (atanDouble# a2) (atanDouble# a3) {-# INLINE atan #-} sinh (DoubleX3# a1 a2 a3) = DoubleX3# (sinhDouble# a1) (sinhDouble# a2) (sinhDouble# a3) {-# INLINE sinh #-} cosh (DoubleX3# a1 a2 a3) = DoubleX3# (coshDouble# a1) (coshDouble# a2) (coshDouble# a3) {-# INLINE cosh #-} tanh (DoubleX3# a1 a2 a3) = DoubleX3# (tanhDouble# a1) (tanhDouble# a2) (tanhDouble# a3) {-# INLINE tanh #-} DoubleX3# a1 a2 a3 ** DoubleX3# b1 b2 b3 = DoubleX3# ((**##) a1 b1) ((**##) a2 b2) ((**##) a3 b3) {-# INLINE (**) #-} logBase x y = log y / log x {-# INLINE logBase #-} asinh x = log (x + sqrt (1.0+x*x)) {-# INLINE asinh #-} acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) {-# INLINE acosh #-} atanh x = 0.5 * log ((1.0+x) / (1.0-x)) {-# INLINE atanh #-} -- offset in bytes is S times bigger than offset in prim elements, -- when S is power of two, this is equal to shift #define BOFF_TO_PRIMOFF(off) uncheckedIShiftRL# off 3# #define ELEM_N 3 instance PrimBytes DoubleX3 where getBytes (DoubleX3# a1 a2 a3) = case runRW# ( \s0 -> case newByteArray# (byteSize @DoubleX3 undefined) s0 of (# s1, marr #) -> case writeDoubleArray# marr 0# a1 s1 of s2 -> case writeDoubleArray# marr 1# a2 s2 of s3 -> case writeDoubleArray# marr 2# a3 s3 of s4 -> unsafeFreezeByteArray# marr s4 ) of (# _, a #) -> a {-# INLINE getBytes #-} fromBytes off arr | i <- BOFF_TO_PRIMOFF(off) = DoubleX3# (indexDoubleArray# arr i) (indexDoubleArray# arr (i +# 1#)) (indexDoubleArray# arr (i +# 2#)) {-# INLINE fromBytes #-} readBytes mba off s0 | i <- BOFF_TO_PRIMOFF(off) = case readDoubleArray# mba i s0 of (# s1, a1 #) -> case readDoubleArray# mba (i +# 1#) s1 of (# s2, a2 #) -> case readDoubleArray# mba (i +# 2#) s2 of (# s3, a3 #) -> (# s3, DoubleX3# a1 a2 a3 #) {-# INLINE readBytes #-} writeBytes mba off (DoubleX3# a1 a2 a3) s | i <- BOFF_TO_PRIMOFF(off) = writeDoubleArray# mba (i +# 2#) a3 ( writeDoubleArray# mba (i +# 1#) a2 ( writeDoubleArray# mba i a1 s )) {-# INLINE writeBytes #-} readAddr addr s0 = case readDoubleOffAddr# addr 0# s0 of (# s1, a1 #) -> case readDoubleOffAddr# addr 1# s1 of (# s2, a2 #) -> case readDoubleOffAddr# addr 2# s2 of (# s3, a3 #) -> (# s3, DoubleX3# a1 a2 a3 #) {-# INLINE readAddr #-} writeAddr (DoubleX3# a1 a2 a3) addr s = writeDoubleOffAddr# addr 2# a3 ( writeDoubleOffAddr# addr 1# a2 ( writeDoubleOffAddr# addr 0# a1 s )) {-# INLINE writeAddr #-} byteSize _ = byteSize @Double undefined *# ELEM_N# {-# INLINE byteSize #-} byteAlign _ = byteAlign @Double undefined {-# INLINE byteAlign #-} byteOffset _ = 0# {-# INLINE byteOffset #-} byteFieldOffset _ _ = negateInt# 1# {-# INLINE byteFieldOffset #-} indexArray ba off | i <- off *# ELEM_N# = DoubleX3# (indexDoubleArray# ba i) (indexDoubleArray# ba (i +# 1#)) (indexDoubleArray# ba (i +# 2#)) {-# INLINE indexArray #-} readArray mba off s0 | i <- off *# ELEM_N# = case readDoubleArray# mba i s0 of (# s1, a1 #) -> case readDoubleArray# mba (i +# 1#) s1 of (# s2, a2 #) -> case readDoubleArray# mba (i +# 2#) s2 of (# s3, a3 #) -> (# s3, DoubleX3# a1 a2 a3 #) {-# INLINE readArray #-} writeArray mba off (DoubleX3# a1 a2 a3) s | i <- off *# ELEM_N# = writeDoubleArray# mba (i +# 2#) a3 ( writeDoubleArray# mba (i +# 1#) a2 ( writeDoubleArray# mba i a1 s )) {-# INLINE writeArray #-} instance PrimArray Double DoubleX3 where broadcast# (D# x) = DoubleX3# x x x {-# INLINE broadcast# #-} ix# 0# (DoubleX3# a1 _ _) = D# a1 ix# 1# (DoubleX3# _ a2 _) = D# a2 ix# 2# (DoubleX3# _ _ a3) = D# a3 ix# _ _ = undefined {-# INLINE ix# #-} gen# _ f s0 = case f s0 of (# s1, D# a1 #) -> case f s1 of (# s2, D# a2 #) -> case f s2 of (# s3, D# a3 #) -> (# s3, DoubleX3# a1 a2 a3 #) upd# _ 0# (D# q) (DoubleX3# _ y z) = DoubleX3# q y z upd# _ 1# (D# q) (DoubleX3# x _ z) = DoubleX3# x q z upd# _ 2# (D# q) (DoubleX3# x y _) = DoubleX3# x y q upd# _ _ _ x = x {-# INLINE upd# #-} withArrayContent# _ g x = g (CumulDims [ELEM_N, 1]) 0# (getBytes x) {-# INLINE withArrayContent# #-} offsetElems _ = 0# {-# INLINE offsetElems #-} uniqueOrCumulDims _ = Right (CumulDims [ELEM_N, 1]) {-# INLINE uniqueOrCumulDims #-} fromElems# _ off ba = DoubleX3# (indexDoubleArray# ba off) (indexDoubleArray# ba (off +# 1#)) (indexDoubleArray# ba (off +# 2#)) {-# INLINE fromElems# #-}